Skip to main content

The Hair Cycle and Its Relation to Nutrition

  • Chapter
  • First Online:
Nutrition for Healthy Hair

Abstract

The hair follicle is subject to a constant turnover in the course of perpetual cycles through phases of proliferation, involution, and resting, with regeneration in the successive hair cycle. Understanding the basics of the hair cycle enables insight into the principles of hair growth and shedding. Many factors can lead to a pathologically increased hair loss. Whatever the cause, the follicle tends to behave in a similar way. To grasp the meaning of this generalization requires understanding the varied derangements of the normal hair cycle. Cyclic hair growth activity occurs in a random mosaic pattern with each follicle possessing its own individual control mechanism over the evolution and triggering of the successive phases, including the local milieu at the level of the stem cells. In addition, a number of systemic and environmental factors may have influence, such as hormones, cytokines and growth factors, toxins, and deficiencies of nutrients, vitamins, and energy (calories). Normal supply, uptake, and transport of proteins, calories, trace elements, and vitamins are of fundamental importance in tissues with a high biosynthetic activity such as in the course of hair cycling. It may appear that on a typical Western diet, people are not subject to nutritional deficiencies. Nevertheless, genetic diversity in nutrient requirements, inappropriate food selection or preparation, intensive physical exertion, comorbidities, and use of drugs may lead to deficiency symptoms resulting in unhealthy hair. In fact, nutritional needs fluctuate with age and with situations that occur throughout the life cycle: infancy, childhood, adolescence, pregnancy, lactation, old age, lifestyle (restricted diets, smoking, alcohol consumption), and health status (chronic disease, medications).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trüeb RM. From hair in India to hair India. Int J Trichol. 2017;9:1–6.

    Article  Google Scholar 

  2. Paus R. Control of the hair cycle and hair diseases as cycling disorders. Curr Opin Dermatol. 1996;3:248–58.

    Google Scholar 

  3. Paus R, Cotsarelis G. The biology of hair follicles. N Engl J Med. 1999;341:491–7.

    Article  CAS  PubMed  Google Scholar 

  4. Guarrera M, Rebora A. Anagen hairs may fail to replace telogen hairs in early androgenic female alopecia. Dermatology. 1996;192:28–31.

    Article  CAS  PubMed  Google Scholar 

  5. Rebora A, Guarrera M. Kenogen. A new phase of the hair cycle? Dermatology. 2002;205:108–10.

    Article  PubMed  Google Scholar 

  6. Guarrera M, Rebora A. Kenogen in female androgenetic alopecia. A longitudinal study. Dermatology. 2005;210:18–20.

    Article  CAS  PubMed  Google Scholar 

  7. Stenn K. Exogen is an active, separately controlled phase of the hair growth cycle. J Am Acad Dermatol. 2005;52:374–5.

    Article  PubMed  Google Scholar 

  8. Rathman-Josserand M, Genty G, Lecardonnel J, Chabane S, Cousson A, François Michelet J, Bernard BA. Human hair follicle stem/progenitor cells express hypoxia markers. J Invest Dermatol. 2013;133:2094–7.

    Article  CAS  PubMed  Google Scholar 

  9. Saleh D, Cook C. Anagen effluvium. SourceStatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2019; 2020–2019 Jul 31.

    Google Scholar 

  10. Piérard GE. Toxic effects of metals from the environment on hair growth and structure. J Cutan Pathol. 1979;6:237–42.

    Article  PubMed  Google Scholar 

  11. Liu J, Lu Y, Wu Q, Goyer RA, Waalkes MP. Mineral arsenicals in traditional medicines: orpiment, realgar, and arsenolite. J Pharmacol Exp Ther. 2008;326:363–8.

    Article  CAS  PubMed  Google Scholar 

  12. Arsenic in drinking water threatens up to 60 million in Pakistan. Science | AAAS; 23 August 2017.Accessed 11 Sep 2017.

    Google Scholar 

  13. Talhout R, Schulz T, Florek E, Van Benthem J, Wester P, Antoon O. Hazardous compounds in tobacco smoke. Int J Environ Res Public Health. 2011;8:613–28.

    Article  PubMed  PubMed Central  Google Scholar 

  14. The Tox guide for arsenic. The US Agency for Toxic Substances and Disease Registry; 2007.

    Google Scholar 

  15. Sharma S, Gupta A, Deshmukh A, Puri V. Arsenic poisoning and Mees’ lines. QJM. 2016;109:565–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stillman JM. Story of alchemy and early chemistry. Whitefish: Kessinger Publishing; 2003. p. 7–9. ISBN: 978-0-7661-3230-6.

    Google Scholar 

  17. Mayell H. Did mercury in “little blue pills” make Abraham Lincoln Erratic? National Geographic News; 2007. Archived from the original on 22 May 2008. Accessed 15 June 2008.

    Google Scholar 

  18. What happened to Mercurochrome? 23 July 2004. Archived from the original on 11 April 2009. Accessed 7 July 2009.

    Google Scholar 

  19. Czarnetzki A, Ehrhardt S. Re-dating the Chinese amalgam-filling of teeth in Europe. Int J Anthropol. 1990;5(4):325–32.

    Google Scholar 

  20. Bharti R, Wadhwani KK, Tikku AP, Chandra A. Dental amalgam: an update. J Conserv Dent. 2010;13(4):204–8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. About Dental Amalgam Fillings. Food and Drug Administration. Accessed 19 April 2015.

    Google Scholar 

  22. Final opinion on dental amalgam. European Commission; 2 June 2015. Accessed 17 Jan 2016.

    Google Scholar 

  23. Dental amalgam: what others say. American Dental Association; May 2015. Accessed 17 Jan 2016.

    Google Scholar 

  24. Bratel J, Haraldson T, Meding B, et al. Potential side effects of dental amalgam restorations. An oral and medical investigation. Eur J Oral Sci. 1997;105:234–43.

    Article  CAS  PubMed  Google Scholar 

  25. Furhoff AK, Tomson Y, Ilie M, Bågedahl-Strindlund M, Larsson KS, Sandborgh-Englund G, Torstenson B, Wretlind K. A multidisciplinary clinical study of patients suffering from illness associated with release of mercury from dental restorations. Medical and odontological aspects. Scand J Prim Health Care. 1998;16:247–52.

    CAS  PubMed  Google Scholar 

  26. Langworth S, Björkman L, Elinder CG, Järup L, Savlin P. Multidisciplinary examination of patients with illness attributed to dental fillings. J Oral Rehabil. 2002;29:705–13.

    Article  CAS  PubMed  Google Scholar 

  27. Lindberg NE, Lindberg E, Larsson G. Psychologic factors in the etiology of amalgam illness. Acta Odontol Scand. 1994;52:219–28.

    Article  CAS  PubMed  Google Scholar 

  28. Bailer J, Rist F, Rudolf A, Staehle HJ, Eickholz P, Triebig G, Bader M, Pfeifer U. Adverse health effects related to mercury exposure from dental amalgam fillings: toxicological or psychological causes? Psychol Med. 2001;31:255–63.

    Article  CAS  PubMed  Google Scholar 

  29. Sundström A, Bergdahl J, Nyberg L, Bergdahl M, Nilsson LG. Stressful negative life events and amalgam-related complaints. Community Dent Oral Epidemiol. 2011;39:12–8.

    Article  PubMed  Google Scholar 

  30. Bågedahl-Strindlund M, Ilie M, Furhoff AK, Tomson Y, Larsson KS, Sandborgh-Englund G, Torstenson B, Wretlind K. A multidisciplinary clinical study of patients suffering from illness associated with mercury release from dental restorations: psychiatric aspects. Acta Psychiatr Scand. 1997;96:475–82.

    Article  PubMed  Google Scholar 

  31. Cocoros G, Cahn PH, Siler W. Mercury concentrations in fish, plankton and water from three Western Atlantic estuaries. J Fish Biol. 1973;5:641–7.

    Article  CAS  Google Scholar 

  32. Bose-O’Reilly S, McCart KM, Steckling N, Lettmeier B. Mercury exposure and children’s health. Curr Probl Pediatr Adolesc Health Care. 2010;40:186–215.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Clarkson TW, Magos L. The toxicology of mercury and its chemical compounds. Crit Rev Toxicol. 2006;36(8):609–62.

    Article  CAS  PubMed  Google Scholar 

  34. Bray M. SKIN DEEP: dying to be white. CNN; 2002. Archived from the original on 2010-04-08. Accessed 12 May 2010.

    Google Scholar 

  35. Wüstner H, Orfanos CE, Steinbach H, Käferstein H, Herpers H. Nail changes and loss of hair: cardinal signs of mercury poisoning from hair bleaches [article in German]. Dtsch Med Wochenschr. 1975;100(1694–7)

    Google Scholar 

  36. Peters JB, Warren MP. Reversible alopecia associated with high blood mercury levels and early menopause: a report of two cases. Menopause. 2019;26:915–8.

    Article  PubMed  Google Scholar 

  37. Bjørklund G. Mercury and acrodynia. J Orthomol Med. 1995;10(3 & 4):145–6.

    Google Scholar 

  38. Stoica A, Katzenellenbogen BS, Martin MB. Activation of estrogen receptor-alpha by the heavy metal cadmium. Mol Endocrinol (Baltimore, MD). 2000;14:545–53.

    CAS  Google Scholar 

  39. Ali I, Penttinen-Damdimopoulou PE, Mäkelä SI, Berglund M, Stenius U, Akesson A, Håkansson H, Halldin K. Estrogen-like effects of cadmium in vivo do not appear to be mediated via the classical estrogen receptor transcriptional pathway. Environ Health Perspect. 2010;118(10):1389–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ali I, Damdimopoulou P, Stenius U, Adamsson A, Mäkelä SI, Åkesson A, Berglund M, Håkansson H, Halldi K. Cadmium-induced effects on cellular signaling pathways in the liver of transgenic estrogen reporter mice. Toxicol Sci. 2012;127:66–75.

    Article  CAS  PubMed  Google Scholar 

  41. Johnson MD, Kenney N, Stoica A, Hilakivi-Clarke L, Singh B, Chepko G, Clarke R, Sholler PF, Lirio AA, Foss C, Reiter R, Trock B, Paik S, Martin MB. Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland. Nat Med. 2003;9:1081–4.

    Article  CAS  PubMed  Google Scholar 

  42. Maret W, Moulis JM. The bioinorganic chemistry of cadmium in the context of its toxicity. cadmium: from toxicity to essentiality. Met Ions Life Sci. 2013;11:1–29.

    Article  CAS  PubMed  Google Scholar 

  43. Wallin M, Barregard L, Sallsten G, Lundh T, Karlsson MK, Lorentzon M, Ohlsson C, Mellström D. Low-level cadmium exposure is associated with decreased bone mineral density and increased risk of incident fractures in elderly men: the MrOS Sweden study. J Bone Miner Res. 2016;31:732–41.

    Article  CAS  PubMed  Google Scholar 

  44. Bachanek T, Staroslawska E, Wolanska E, Jarmolinska K. Heavy metal poisoning in glass worker characterised by severe. Ann Agric Environ Med. 2000;7:51–3.

    CAS  PubMed  Google Scholar 

  45. Dias F, Bonsucesso JS, Oliveira LC, Dos Santos WNL. Preconcentration and determination of copper in tobacco leaves samples by using a minicolumn of sisal fiber (Agave sisalana) loaded with Alizarin fluorine blue by FAAS. Talanta. 2012;89:276–9.

    Article  CAS  Google Scholar 

  46. Järup L, Berglund M, Elinder CG, Nordberg G, Vahter M. Health effects of cadmium exposure—a review of the literature and a risk estimate. Scand J Work Environ Health. 1998;24(Suppl 1):1–51.

    PubMed  Google Scholar 

  47. Li H, Wallin M, Barregard L, Sallsten G, Lundh T, Ohlsson C, Mellström D, Andersson EM. Smoking-induced risk of osteoporosis is partly mediated by cadmium from tobacco smoke: the MrOS Sweden study. J Bone Miner Res. 2020; https://doi.org/10.1002/jbmr.4014. [Epub ahead of print].

  48. Dowling GB. Ringworm of the scalp treated by thallium acetate epilation. Proc R Soc Med. 1927;20:1055–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gross P, Runne E, Wilson JW. Studies on the effect of thallium poisoning of the rat: the influence of cystine and methionine on alopecia and survival periods. J Invest Dermatol. 1948;10:119–34.

    Article  CAS  PubMed  Google Scholar 

  50. Lu CI, Huang CC, Chang YC, Tsai YT, Kuo HC, Chuang YH, Shih TS. Short-term thallium intoxication: dermatological findings correlated with thallium concentration. Arch Dermatol. 2007;143(1):93–8.

    Article  CAS  PubMed  Google Scholar 

  51. Campbell C, Bahrami S, Owen C. Anagen effluvium caused by thallium poisoning. JAMA Dermatol. 2016;152:724–6.

    Article  PubMed  Google Scholar 

  52. Saha A, Sadhu HG, Karnik AB, Patel TS, Sinha SN, Saiyed HN. Erosion of nails following thallium poisoning: a case report. Occup Environ Med. 2004;61:640–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Feldman J, Levisohn DR. Acute alopecia: clue to thallium toxicity. Pediatr Dermatol. 1993;10:29–31.

    Article  CAS  PubMed  Google Scholar 

  54. Daniel CR 3rd, Piraccini BM, Tosti A. The nail and hair in forensic science. J Am Acad Dermatol. 2004;50(2):258–61.

    Article  PubMed  Google Scholar 

  55. Gross M. Beethoven’s ringlets—from a medical point of view [article in German]. Dtsch Med Wochenschr. 2013;138:2633–8.

    Article  CAS  PubMed  Google Scholar 

  56. Kintz P, Ginet M, Cirimele V. Multi-element screening by ICP-MS of two specimens of Napoleon’s hair. J Anal Toxicol. 2006;30:621–3.

    Article  CAS  PubMed  Google Scholar 

  57. Kerdel-Vegas F. Generalized hair loss due to the ingestion of “coco dem mono”. J Invest Dermatol. 1964;42:91–4.

    Article  CAS  PubMed  Google Scholar 

  58. Aronow L, Kerdel-Vegas F. Seleno-cystathionine, a pharmacologically active factor in the seeds of Lecythis ollaria. Nature. 1965;205:1185–7.

    Article  CAS  Google Scholar 

  59. Müller D, Desel H. Acute selenium poisoning by paradise nuts (Lecythis ollaria). Hum Exp Toxicol. 2010;29:431–4.

    Article  PubMed  CAS  Google Scholar 

  60. Crounse RG, Maxwell JD, Blank H. Inhibition of growth of hair by mimosine. Nature. 1962;194:694–5.

    Article  CAS  PubMed  Google Scholar 

  61. Montagna W, Yun JS. The effects of the seeds of Leucaena glauca on the hair follicles of the mouse. J Invest Dermatol. 1963;40:325–32.

    Article  Google Scholar 

  62. Nerlekar N, Beale A, Harper RW. Colchicine—a short history of an ancient drug. Med J Aust. 2014;201:687–8.

    Article  PubMed  Google Scholar 

  63. Finkelstein Y, Aks SE, Hutson JR, Juurlink DN, Nguyen P, Dubnov-Raz G, Pollak U, Koren G, Bentur Y. Colchicine poisoning: the dark side of an ancient drug. Clin Toxicol. 2010;48(5):407–14.

    Article  CAS  Google Scholar 

  64. Malkinson FD, Lynfield YL. Colchicine alopecia. J Invest Dermatol. 1959;33:371.

    Article  CAS  PubMed  Google Scholar 

  65. Combalia A, Baliu-Piqué C, Fortea A, Ferrando J. Anagen effluvium following acute colchicine poisoning. Int J Trichol. 2016;8:171–2.

    Article  Google Scholar 

  66. Kande Vidanalage CJ, Ekanayeka R, Wijewardane DK. Case report: a rare case of attempted homicide with Gloriosa superba seeds. BMC Pharmacol Toxicol. 2016;17:26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Bains A, Verma GK, Vedant D, Negi A. Anagen effluvium secondary to Gloriosa superba ingestion. Indian J Dermatol Venereol Leprol. 2016;82:677–80.

    Article  PubMed  Google Scholar 

  68. Gooneratne BWM. Massive generalized alopecia after poisoning by Gloriosa superba. Br Med J. 1966;1:1023–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Assouly P. Hair loss associated with cucurbit poisoning. JAMA Dermatol. 2018;154:617–8.

    Article  PubMed  Google Scholar 

  70. Headington JT. Telogen effluvium. New concepts and review. Arch Dermatol. 1993;129:356–63.

    Article  CAS  PubMed  Google Scholar 

  71. Trüeb RM. Telogen effluvium: is there a need for a new classification? Skin Appendage Disord. 2016;2:39–44.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Barraud-Klenovsek MM, Trüeb RM. Congenital hypotrichosis due to short anagen. Br J Dermatol. 2000;143:612–7.

    Article  CAS  PubMed  Google Scholar 

  73. Van Scott EJ, Reinertson RP, Steinmuller R. The growing hair roots of the human scalp and morphologic changes therein following amethopterin therapy. J Invest Dermatol. 1957;29:197–204.

    Article  Google Scholar 

  74. Van Scott EJ, Reinertson RP. Detection of radiation effects on hair roots of the human scalp. J Invest Dermatol. 1957;29:205–12.

    Article  Google Scholar 

  75. Pecoraro V, Astore I, Barman J, Ignacioaraujo C. The normal trichogram in the child before the age of puberty. Invest Dermatol. 1964;42:427–30.

    Article  CAS  Google Scholar 

  76. Braun-Falco O, Heilgemeir GP. The trichogram. Structural and functional basis, performance, and interpretation. Sem Dermatol. 1985;4:40–52.

    Google Scholar 

  77. Blume-Peytavi U, Orfanos CE. Microscopy of the hair—the trichogram. In: Derup J, Jemec GBE, editors. Handbook of non-invasive methods and the skin. London: CRC Press; 1995. p. 549–54.

    Google Scholar 

  78. Galliker NA, Trüeb RM. Value of trichoscopy versus trichogram for diagnosis of female androgenetic alopecia. Int J Trichol. 2012;4:19–22.

    Article  Google Scholar 

  79. Trüeb RM, Reis Gavazzoni Dias MF. A comment on trichoscopy. Int J Trichol. 2018;10(4):147–9.

    Article  Google Scholar 

  80. Tosti A, Peluso AM, Misciali C, et al. Loose anagen hair. Arch Dermatol. 1997;133:1089–93.

    Article  CAS  PubMed  Google Scholar 

  81. Hambidge KM. Hair analyses: worthless for vitamins, limited for minerals. Am J Clin Nutr. 1982;36:943–9.

    Article  CAS  PubMed  Google Scholar 

  82. Sherertz E. Misuse of hair analysis as a diagnostic tool. Arch Dermatol. 1985;121:1504–5.

    Article  CAS  PubMed  Google Scholar 

  83. Zlotken SH. Hair analysis. A useful tool or a waste of money? Int J Dermatol. 1985;24:161–4.

    Google Scholar 

  84. Seidel S, Kreutzer R, Smith D, McNeel S, Gilliss D. Assessment of commercial laboratories performing hair mineral analysis. JAMA. 2001;285:67–72.

    Article  CAS  PubMed  Google Scholar 

  85. Drasch G, Roider G. Assessment of hair mineral analysis commercially offered in Germany. J Trace Elem Med Biol. 2002;16(1):27–31.

    Article  CAS  PubMed  Google Scholar 

  86. Gummer CL. Diet and hair loss. Semin Dermatol. 1985;4:35–9.

    Google Scholar 

  87. Finner AM. Nutrition and hair: deficiencies and supplements. Dermatol Clin. 2013;31:167–72.

    Article  CAS  PubMed  Google Scholar 

  88. Wolfe RR, Miller SL. The recommended dietary allowance of protein: a misunderstood concept. JAMA. 2008;299:2891–3.

    Article  CAS  PubMed  Google Scholar 

  89. Estimated calorie needs per day, by age, sex, and physical activity level—2015–2020 Dietary guidelines. Office of Disease Prevention and Health Promotion. U.S. Department of Health and Human Services and U.S. Department of Agriculture; December 2015.

    Google Scholar 

  90. Kealey T, Williams R, Philpott MP. The human hair follicle engages in glutaminolysis and aerobic glycolysis: implications for skin, splanchnic and neoplastic metabolism. Skin Pharmacol. 1994;7:41–6.

    Article  CAS  PubMed  Google Scholar 

  91. Philpott MP, Kealey T. Metabolic studies on isolated hair follicles: hair follicles engage in aerobic glycolysis and do not demonstrate the glucose fatty acid cycle. J Invest Dermatol. 1991;96:875–9.

    Article  CAS  PubMed  Google Scholar 

  92. Cottle DJ, editor. Australian sheep and wool handbook. Christchurch: Inkata Press; 1991. p. 202.

    Google Scholar 

  93. Tanumihardjo SA. Vitamin A: biomarkers of nutrition for development. Am J Clin Nutr. 2011;94:658S–65S.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Fuchs E, Green H. Regulation of terminal differentiation of cultured human keratinocytes by vitamin A. Cell. 1981;25(3):617–25.

    Article  CAS  PubMed  Google Scholar 

  95. Combs GF. The vitamins: fundamental aspects in nutrition and health. 3rd ed. Burlington, MA: Elsevier Academic Press; 2008.

    Google Scholar 

  96. Nelson AM, Zhao W, Gilliland KL, Zaenglein AL, Liu W, Thiboutot DM. Neutrophil gelatinase-associated lipocalin mediates 13-cis retinoic acid-induced apoptosis of human sebaceous gland cells. J Clin Invest. 2008;118(4):1468–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. McClean FC, Budy AM. Vitamin A, vitamin D, cartilage, bones, and teeth. Vitamins and hormones, vol. 21. New York: Academic Press; 1964. p. 51–2.

    Google Scholar 

  98. Bolland MJ, Grey A, Gamble GD, Reid IR. The effect of vitamin D supplementation on skeletal, vascular, or cancer outcomes: a trial sequential meta-analysis. Lancet Diabetes Endocrinol. 2014;2:307–20.

    Article  CAS  PubMed  Google Scholar 

  99. Khan SU, Khan MU, Riaz H, Valavoor S, Zhao D, Vaughan L, et al. Effects of nutritional supplements and dietary interventions on cardiovascular outcomes. Ann Intern Med. 2019;171:190–8.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Spiro A, Buttriss JL. Vitamin D: an overview of vitamin D status and intake in Europe. Nutr Bull. 2014;39(4):322–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Evans HM, Bishop KS. On the existence of a hitherto unrecognized dietary factor essential for reproduction. Science. 1922;56:650–1.

    Article  CAS  PubMed  Google Scholar 

  102. Sidgwick GP, McGeorge D, Bayat A. A comprehensive evidence-based review on the role of topicals and dressings in the management of skin scarring. Arch Dermatol Res. 2015;307:461–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tanaydin V, Conings J, Malyar M, van der Hulst R, van der Lei B. The role of topical vitamin E in scar management: a systematic review. Aesthet Surg J. 2016;36:959–65.

    Article  PubMed  Google Scholar 

  104. Tilburt JC, Emanuel EJ, Miller FG. Does the evidence make a difference in consumer behavior? Sales of supplements before and after publication of negative research results. J Gen Intern Med. 2008;23:1495–8.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Miller ER, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med. 2005;142:37–46.

    Article  CAS  PubMed  Google Scholar 

  106. Poppe H, Poppe LM, Goebeler M, Trautmann A. Treatment of disseminated granuloma annulare with oral vitamin E: ‘primum nil nocere’. Dermatology. 2013;227:83–8.

    Article  CAS  PubMed  Google Scholar 

  107. Ayres S Jr, Mihan R. Lupus erythematosus and vitamin E: an effective and nontoxic therapy. Cutis. 1979;23:49–52, 54.

    PubMed  Google Scholar 

  108. Shirakata Y, Shiraishi S, Sayama K, Shinmori H, Miki Y. High-dose tocopherol acetate therapy in epidermolysis bullosa siblings of the Cockayne-Touraine type. J Dermatol. 1993;20:723–5.

    Article  CAS  PubMed  Google Scholar 

  109. Ayres S Jr, Mihan R. Yellow nail syndrome: response to vitamin E. Arch Dermatol. 1973;108:267–8.

    Article  PubMed  Google Scholar 

  110. Prussick R, Ali MA, Rosenthal D, Guyatt G. The protective effect of vitamin E on the hemolysis associated with dapsone treatment in patients with dermatitis herpetiformis. Arch Dermatol. 1992;128:210–3.

    Article  CAS  PubMed  Google Scholar 

  111. Cox NH. Vitamin E for dapsone-induced headache. Br J Dermatol. 2002;146:174.

    CAS  PubMed  Google Scholar 

  112. Martin-Jimenez M, Diaz-Rubio E, Gonzalez Larriba JL, Sangro B. Failure of high-dose tocopherol to prevent alopecia induced by doxorubicin. N Engl J Med. 1986;315:894–5.

    Article  CAS  PubMed  Google Scholar 

  113. Furie B, Bouchard BA, Furie BC. Vitamin K-dependent biosynthesis of gamma-carboxyglutamic acid. Blood. 1999;93:1798–808.

    Article  CAS  PubMed  Google Scholar 

  114. Maresz K. Proper calcium use: vitamin K2 as a promoter of bone and cardiovascular health. Integr Med. 2015;14:34–9.

    Google Scholar 

  115. Whitlon DS, Sadowski JA, Suttie JW. Mechanism of coumarin action: significance of vitamin K epoxide reductase inhibition. Biochemistry. 1978;17:1371–7.

    Article  CAS  PubMed  Google Scholar 

  116. Akella P, Jindal V, Maradana S, Siddiqui AD. Dying to be ill: Munchausen meets warfarin overdose. J Family Med Prim Care. 2019;8:2741–3.

    PubMed  PubMed Central  Google Scholar 

  117. Groszek B, Piszczek P. Vitamin K antagonists overdose [article in Polish]. Przegl Lek. 2015;72:468–71.

    PubMed  Google Scholar 

  118. Shirai K, Obara K, Tohgi N, Yamazaki A, Aki R, Hamada Y, Arakawa N, Singh SR, Hoffman RM, Amoh Y. Expression of anti-aging type-XVII collagen (COL17A1/BP180) in hair follicle-associated pluripotent (HAP) stem cells during differentiation. Tissue Cell. 2019;59:33–8.

    Article  CAS  PubMed  Google Scholar 

  119. Pullar JM, Carr AV, Vissers MCM. The roles of vitamin C in skin health. Nutrients. 2017;9:866.

    Article  PubMed Central  CAS  Google Scholar 

  120. Sung YK, Hwang SY, Cha SY, Kim SR, Park SY, Kim MK, Kim JC. The hair growth promoting effect of ascorbic acid 2-phosphate, a long-acting vitamin C derivative. J Dermatol Sci. 2006;4:150–2.

    Article  CAS  Google Scholar 

  121. Kwack MH, Shin SH, Kim SR, Im SU, Han IS, Kim MK, Kim JC, Sung YK. l-Ascorbic acid 2-phosphate promotes elongation of hair shafts via the secretion of insulin-like growth factor-1 from dermal papilla cells through phosphatidylinositol 3-kinase. Br J Dermatol. 2009;160:1157–62.

    Article  CAS  PubMed  Google Scholar 

  122. Granger M, Eck P. Dietary vitamin C in human health. Adv Food Nutr Res. 2018;83:281–310.

    Article  PubMed  Google Scholar 

  123. Hirschmann JV, Raugi GJ. Adult scurvy. J Am Acad Dermatol. 1999;41:895–906.

    Article  CAS  PubMed  Google Scholar 

  124. Edsall JT. Linus Pauling and vitamin C. Science. 1972;178:696.

    Article  CAS  PubMed  Google Scholar 

  125. Moritsugu KP. The 2006 report of the surgeon general: the health consequence of involuntary exposure to tobacco smoke. Am J Prev Med. 2007;32:542–3.

    Article  PubMed  Google Scholar 

  126. Goodwin JS, Tangum MR. Battling quackery: attitudes about micronutrient supplements in American academic medicine. Arch Intern Med. 1998;158:2187–9.

    Article  CAS  PubMed  Google Scholar 

  127. Naidu KA. Vitamin C in human health and disease is still a mystery? An overview. Nutr J. 2003;2:7.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Thomas LD, Elinder CG, Tiselius HG, Wolk A, Akesson A. Ascorbic acid supplements and kidney stone incidence among men: a prospective study. JAMA Intern Med. 2013;173:386–8.

    Article  PubMed  Google Scholar 

  129. Almohanna HM, Ahmed AA, Tsatalis JP, Tosti A. The role of vitamins and minerals in hair loss: a review. Dermatol Ther (Heidelb). 2019;9:51–70.

    Article  Google Scholar 

  130. Hengl T, Herfert J, Soliman A, Schlinzig K, Trüeb RM, Abts HF. Cystine-thiamin-containing hair-growth formulation modulates the response to UV radiation in an in vitro model for growth-limiting conditions of human keratinocytes. J Photochem Photobiol B. 2018;189:318–25.

    Article  CAS  PubMed  Google Scholar 

  131. Chiossi G, Neri I, Cavazzuti M, Basso G, Facchinetti F. Hyperemesis gravidarum complicated by Wernicke encephalopathy: background, case report, and review of the literature. Obstet Gynecol Surv. 2006;6:255–68.

    Article  Google Scholar 

  132. Lonsdale D. A review of the biochemistry, metabolism and clinical benefits of thiamin(e) and its derivatives. Evid Based Complement Alternat Med. 2006;3:49–59.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Katta N, Balla S, Alpert MA. Does long-term furosemide therapy cause thiamine deficiency in patients with heart failure? A focused review. Am J Med. 2006;129:753.

    Google Scholar 

  134. Rybicka I, Gliszczynska-Swiglo A. Gluten-free flours from different raw materials as the source of vitamin B 1, B 2, B 3 and B 6. J Nutr Sci Vitaminol (Tokyo). 2017;63:125–32.

    Article  CAS  Google Scholar 

  135. Riboflavin RR. Encyclopedia of dietary supplements. London and New York: Informa Healthcare; 2010. p. 691–9.

    Google Scholar 

  136. Forbat E, Al-Niaimi F, Ali FR. Use of nicotinamide in dermatology. Clin Exp Dermatol. 2017;42(2):137–44.

    Article  CAS  PubMed  Google Scholar 

  137. Rolfe HM. A review of nicotinamide: treatment of skin diseases and potential side effects. J Cosmet Dermatol. 2014;13:324–8.

    Article  PubMed  Google Scholar 

  138. Draelos ZD, Jacobson EL, Kim H, Kim M, Jacobson MK. A pilot study evaluating the efficacy of topically applied niacin derivatives for treatment of female pattern alopecia. J Cosmet Dermatol. 2005;4:258–61.

    Article  PubMed  Google Scholar 

  139. Dupré A, Lassère J, Christol B, et al. Traitement des alopecies diffuse chroniques par le panthenol et la D-biotin injectables. Rev Med Toulouse. 1977;123:675–7.

    Google Scholar 

  140. Davis MG, Thomas JH, van de Velde S, Boissy Y, Dawson TL Jr, Iveson R, Sutton K. A novel cosmetic approach to treat thinning hair. Br J Dermatol. 2011;165(Suppl 3):24–30.

    Article  CAS  PubMed  Google Scholar 

  141. Fernandes RA, Santiago L, Gouveia M, Gonçalo M. Allergic contact dermatitis caused by dexpanthenol-probably a frequent allergen. Contact Dermatitis. 2018;79:276–80.

    Article  CAS  PubMed  Google Scholar 

  142. Schalock PC, Storrs FJ, Morrison L. Contact urticaria from panthenol in hair conditioner. Contact Dermatitis. 2000;43:223.

    Article  CAS  PubMed  Google Scholar 

  143. Brzezińska-Wcisło L. Evaluation of vitamin B6 and calcium pantothenate effectiveness on hair growth from clinical and trichographic aspects for treatment of diffuse alopecia in women [article in Polish]. Wiad Lek. 2011;54:11–8.

    Google Scholar 

  144. Vialkowtisch B. The treatment of seborrheic disease picture and falling hair with vitamin B6 [article in German]. Med Welt. 1962;22:1260–2.

    Google Scholar 

  145. Barber GW, Spaeth GL. The successful treatment of homocystinuria with pyridoxine. J Pediatr. 1969;75:463–78.

    Article  CAS  PubMed  Google Scholar 

  146. Shelley WB, Rawnsley HM, Morrow G 3rd. Pyridoxine-dependent hair pigmentation in association with homocystinuria. The induction of melanotrichia. Arch Dermatol. 1972;106:228–30.

    Article  CAS  PubMed  Google Scholar 

  147. Reinken L, Dapunt O, Kammerlander H. Vitamin B 6 deficiency with intake of oral contraceptives [article in German]. Int J Vitam Nutr Res. 1973;43(1):20–7.

    CAS  PubMed  Google Scholar 

  148. van der Steen W, den Heijer T, Groen J. Vitamin B6 deficiency caused by the use of levodopa [article in Dutch]. Ned Tijdschr Geneeskd. 2018;162:D2818.

    PubMed  Google Scholar 

  149. Mintzer S, Skidmore CT, Sperling MR. B-vitamin deficiency in patients treated with antiepileptic drugs. Epilepsy Behav. 2012;24:341–4.

    Article  PubMed  Google Scholar 

  150. No authors listed. Vitamin B6 deficiency following isoniazid therapy. Nutr Rev 1968;26:306–8.

    Google Scholar 

  151. Lakdawala N, Grant-Kels JM. Acrodermatitis enteropathica and other nutritional diseases of the folds (intertriginous areas). Clin Dermatol. 2015;33:414–9.

    Article  PubMed  Google Scholar 

  152. van Hunsel F, van de Koppel S, Puijenbroek E, Kant A. Vitamin B6 in health supplements and neuropathy: case series assessment of spontaneously reported cases. Drug Saf. 2018;4:859–69.

    Article  CAS  Google Scholar 

  153. Vrolijk MF, Opperhuizen A, Jansen EHJM, Hageman GJ, Bast A, Guido R, Haenen GRMM. The vitamin B6 paradox: supplementation with high concentrations of pyridoxine leads to decreased vitamin B6 function. Toxicol In Vitro. 2017;44:206–12.

    Article  CAS  PubMed  Google Scholar 

  154. Makino Y, Osada K, Sone H, Sugiyama K, Komai M, Ito M, Tsunoda K, Furukawa Y. Percutaneous absorption of biotin in healthy subjects and in atopic dermatitis patients. J Nutr Sci Vitaminol (Tokyo). 1999;45:347–52.

    Article  CAS  Google Scholar 

  155. van den Berg H. Bioavailability of biotin. Eur J Clin Nutr. 1997;51(Suppl 1):S60–1.

    PubMed  Google Scholar 

  156. Hayashi A, Mikami Y, Miyamoto K, Kamada N, Sato T, Mizuno S, Naganuma M, Teratani T, Aoki R, Fukuda S, Suda W, Hattori M, Amagai M, Ohyama M, Kanai T. Intestinal dysbiosis and biotin deprivation induce alopecia through overgrowth of Lactobacillus murinus in mice. Cell Rep. 2017;20(7):1513–24.

    Article  CAS  PubMed  Google Scholar 

  157. Schulpis KH, Karikas GA, Tjamouranis J, Regoutas S, Tsakiris S. Low serum biotinidase activity in children with valproic acid monotherapy. Epilepsia. 2001;42(10):1359–62.

    Article  CAS  PubMed  Google Scholar 

  158. Schulpis KH, Georgala S, Papakonstantinou ED, Michas T, Karikas GA. The effect of isotretinoin on biotinidase activity. Skin Pharmacol Appl Skin Physiol. 1999;12(1–2):28–33.

    Article  CAS  PubMed  Google Scholar 

  159. Durance TD. Residual avid in activity in cooked egg white assayed with improved sensitivity. J Food Sci. 1991;56(3):707–9.

    Article  CAS  Google Scholar 

  160. Brescoll J, Daveluy S. A review of vitamin B12 in dermatology. Am J Clin Dermatol. 2015;16:27–33.

    Article  PubMed  Google Scholar 

  161. Kaur S, Goraya JS. Dermatologic findings of vitamin B(12) deficiency in infants. Pediatr Dermatol. 2018;35:796–9.

    Article  PubMed  Google Scholar 

  162. Demir N, Doğan M, Koç A, Kaba S, Bulan K, Ozkol HU, Doğan SZ. Dermatological findings of vitamin B12 deficiency and resolving time of these symptoms. Cutan Ocul Toxicol. 2014;33:70–3.

    Article  CAS  PubMed  Google Scholar 

  163. Noppakun N, Swasdikul D. Reversible hyperpigmentation of skin and nails with white hair due to vitamin B12 deficiency. Arch Dermatol. 1986;122:896–9.

    Article  CAS  PubMed  Google Scholar 

  164. Carmel R. Hair and fingernail changes in acquired and congenital pernicious anemia. Arch Intern Med. 1985;145:484–5.

    Article  CAS  PubMed  Google Scholar 

  165. Wald NJ, Morris JK, Blakemore C. Public health failure in the prevention of neural tube defects: time to abandon the tolerable upper intake level of folate. Public Health Rev. 2018;39:2.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet. 2007;8:253–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ellis JA. Future directions: gene polymorphism diagnostics relevant to hair. In: Trüeb RM, Tobin DJ, editors. Aging hair. Berlin Heidelberg: Springer; 2010. p. 221.

    Chapter  Google Scholar 

  168. Smelt HJM, Pouwels S, Said M, Smulders JF. Neuropathy by folic acid supplementation in a patient with anaemia and an untreated cobalamin deficiency: a case report. Clin Obes. 2018;8:300–4.

    Article  CAS  PubMed  Google Scholar 

  169. Smith AD. Folic acid fortification: the good, the bad, and the puzzle of vitamin B-12. Am J Clin Nutr. 2007;85:3–5.

    Article  CAS  PubMed  Google Scholar 

  170. Burr GO, Burr MM. A new deficiency disease produced by the rigid exclusion of fat from the diet. J Biol Chem. 1929;82:35–367.

    Google Scholar 

  171. Simopoulos A. Omega 3 fatty acids in wild plants, nuts and seeds. Asia Pac J Cin Nutr. 2002;11:163–73.

    Article  Google Scholar 

  172. Gale MM, Crawford MA, Woodford MH. The fatty acid composition of adipose and muscle tissue in domestic and free-living ruminants. Biochem J. 1969;113:6P.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. van Vliet T, Katan MB. Lower ratio of n-3 to n-6 fatty acids in cultured than in wild fish. Am J Clin Nutr. 1990;51:1–2.

    Article  PubMed  Google Scholar 

  174. Endres S, Ghorbani R, Kelley VE, Georgilis K, Lonnemann G, van der Meer JW, Cannon JG, Rogers TS, Klempner MS, Weber PC, et al. The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N Engl J Med. 1989;320:265–71.

    Article  CAS  PubMed  Google Scholar 

  175. Caughey GE, Mantzioris E, Gibson RA, Cleland LG, James MJ. The effect on human tumor necrosis factor alpha and interleukin 1 beta production of diets enriched in n-3 fatty acids from vegetable oil or fish oil. Am J Clin Nutr. 1996;63:116–22.

    Article  CAS  PubMed  Google Scholar 

  176. Trebble T, Arden NK, Stroud MA, Wootton SA, Burdge GC, Miles EA, Ballinger AB, Thompson RL, Calder PC. Inhibition of tumour necrosis factor-alpha and interleukin 6 production by mononuclear cells following dietary fish-oil supplementation in healthy men and response to antioxidant co-supplementation. Br J Nutr. 2003;90:405–12.

    Article  CAS  PubMed  Google Scholar 

  177. Meydani SN, Endres S, Woods MM, Goldin BR, Soo C, Morrill-Labrode A, Dinarello CA, Gorbach SL. Oral (n-3) fatty acid supplementation suppresses cytokine production and lymphocyte proliferation: comparison between young and older women. J Nutr. 1991;121:547–55.

    Article  CAS  PubMed  Google Scholar 

  178. Cordain L, Lindeberg S, Hurtado M, et al. Acne vulgaris: a disease of Western civilization. Arch Dermatol. 2002;138:1584–90.

    Article  PubMed  Google Scholar 

  179. Truchetet E, Brändle I, Grosshans E. Skin changes, pathophysiology and therapy in deficiency of essential fatty acids. Z Hautkr. 1988;63:290–301.

    CAS  PubMed  Google Scholar 

  180. Schroeter AL, Tucker SB. Essential fatty acid deficiency. Arch Dermatol. 1978;114:800–1.

    Article  CAS  PubMed  Google Scholar 

  181. Kirby NA, Hester SL, Bauer JE. Dietary fats and the skin and coat of dogs. J Am Vet Med Assoc. 2007;230:1641–4.

    Article  CAS  PubMed  Google Scholar 

  182. Munkhbayar S, Jang S, Cho A, Choi S, Yup Shin C, Chul Eun H, Han Kim K, Kwon O. Role of arachidonic acid in promoting hair growth. Ann Dermatol. 2016;28:55–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. van Breda SG, de Kok TM, van Delft JH. Mechanisms of colorectal and lung cancer prevention by vegetables: a genomic approach. J Nutr Biochem. 2008;19:139–57.

    Article  PubMed  CAS  Google Scholar 

  184. Palermo M, Pellegrini N, Fogliano V. The effect of cooking on the phytochemical content of vegetables. J Sci Food Agric. 2014;94:1057–70.

    Article  CAS  PubMed  Google Scholar 

  185. Dewanto V, Wu X, Adom KK, Liu RH. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem. 2002;50(10):3010–4.

    Article  CAS  PubMed  Google Scholar 

  186. Lambert WC, Gagna CE, Lambert MW. Trichothiodystrophy: photosensitive, TTD-P, TTD, Tay syndrome. Adv Exp Med Biol. 2010;685:106–10.

    Article  CAS  PubMed  Google Scholar 

  187. Itin PH, Sarasin A, Pittelkow MR. Trichothiodystrophy: update on the sulfur-deficient brittle hair syndromes. J Am Acad Dermatol. 2001;44:891–920.

    Article  CAS  PubMed  Google Scholar 

  188. Liang C, Morris A, Schlücker S, Imoto K, Price VH, Menefee E, Wincovitch SM, Levin IW, Tamura D, Strehle KR, Kraemer KH, DiGiovanna JJ. Structural and molecular hair abnormalities in trichothiodystrophy. J Invest Dermatol. 2006;126:2210–6.

    Article  CAS  PubMed  Google Scholar 

  189. Liang C, Kraemer KH, Morris A, Schiffmann R, Price VH, Menefee E, DiGiovanna JJ. Characterization of tiger-tail banding and hair shaft abnormalities in trichothiodystrophy. J Am Acad Dermatol. 2005;52:224–32.

    Article  PubMed  Google Scholar 

  190. Haider LM, Schwingshackl L, Hoffmann G, Ekmekcioglu C. The effect of vegetarian diets on iron status in adults: a systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2018;58:1359–74.

    Article  CAS  PubMed  Google Scholar 

  191. Bregy A, Trueb RM. No association between serum ferritin levels >10 microg/l and hair loss activity in women. Dermatology. 2008;217:1–6.

    Article  PubMed  Google Scholar 

  192. Lynch SR, Cook JD. Interaction of vitamin C and iron. Ann N Y Acad Sci. 1980;355:32–44.

    Article  CAS  PubMed  Google Scholar 

  193. Rushton DH. Nutritional factors and hair loss. Clin Exp Dermatol. 2002;27:396–404.

    Article  CAS  PubMed  Google Scholar 

  194. Chevrant-Breton J, Simon M, Bourel M, Ferrand B. Cutaneous manifestations of idiopathic hemochromatosis. Study of 100 cases. Arch Dermatol. 1977;113:161–5.

    Article  CAS  PubMed  Google Scholar 

  195. Kew MC, Asare GA. Dietary iron overload in the African and hepatocellular carcinoma. Liver Int. 2007;27(6):735–41.

    Article  CAS  PubMed  Google Scholar 

  196. Fleming RE, Ponka P. Iron overload in human disease. N Engl J Med. 2012;366:348–59.

    Article  CAS  PubMed  Google Scholar 

  197. Ward DM, Kaplan J. Ferroportin-mediated iron transport: expression and regulation. Biochim Biophys Acta. 2012;1823:1426–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Schell H, Kiesewetter F, Seidel C, von Hintzenstern J. Cell cycle kinetics of human anagen scalp hair bulbs in thyroid disorders determined by DNA flow cytometry. Dermatologica. 1991;182:23–6.

    Article  CAS  PubMed  Google Scholar 

  199. Billoni N, Buan B, Gautier B, Gaillard O, Mahé YF, Bernard BA. Thyroid hormone receptor beta1 is expressed in the human hair follicle. Br J Dermatol. 2000;142:645–52.

    Article  CAS  PubMed  Google Scholar 

  200. Thomsen K. Dermatitis herpetiformis. A case provoked by iodine. Br J Dermatol. 1974;91:221–4.

    Article  PubMed  Google Scholar 

  201. Reitamo S, Reunala T, Konttinen YT, Saksela O, Salo OP. Inflammatory cells, IgA, C3, fibrin and fibronectin in skin lesions in dermatitis herpetiformis. Br J Dermatol. 1981;105:167–77.

    Article  CAS  PubMed  Google Scholar 

  202. Haffenden GP, Blenkinsopp WK, Ring NP, Wojnarowska F, Fry L. The potassium iodide patch test in the dermatitis herpetiformis in relation to treatment with a gluten-free diet and dapsone. Br J Dermatol. 1980;103:313–7.

    Article  CAS  PubMed  Google Scholar 

  203. Senn HJ. Paracelsus, scientific research and supportive care—500 years after! Support Care Cancer. 1993;1:230–2.

    Article  CAS  PubMed  Google Scholar 

  204. Ogawa Y, Kawamura T, Shimada S. Zinc and skin biology. Arch Biochem Biophys. 2016;611:113–9.

    Article  CAS  PubMed  Google Scholar 

  205. Foster M, Chu A, Petocz P, Samman S. Effect of vegetarian diets on zinc status: a systematic review and meta-analysis of studies in humans. J Sci Food Agric. 2013;93:2362–71.

    Article  CAS  PubMed  Google Scholar 

  206. Maret W, Sandstead HH. Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol. 2006;20:3–18.

    Article  CAS  PubMed  Google Scholar 

  207. Mazokopakis EE, Papadakis JA, Papadomanolaki MG, et al. Effects of 12 months treatment with L-selenomethionine on serum anti-TPO levels in patients with Hashimoto’s thyroiditis. Thyroid. 2007;17:609–12.

    Article  CAS  PubMed  Google Scholar 

  208. Ralston NVC, Raymond LJ. Dietary selenium’s protective effects against methylmercury toxicity. Toxicology. 2010;278:112–23.

    Article  CAS  PubMed  Google Scholar 

  209. Ralston NV, Ralston CR, Blackwell JL III, Raymond LJ. Dietary and tissue selenium in relation to methylmercury toxicity. Neurotoxicology. 2008;29:802–11.

    Article  CAS  PubMed  Google Scholar 

  210. Penglase S, Hamre K, Ellingsen S. Selenium prevents downregulation of antioxidant selenoprotein genes by methylmercury. Free Radic Biol Med. 2014;75:95–104.

    Article  CAS  PubMed  Google Scholar 

  211. Usuki F, Yamashita A, Fujimura M. Post-transcriptional defects of antioxidant selenoenzymes cause oxidative stress under methylmercury exposure. J Biol Chem. 2011;286:6641–9.

    Article  CAS  PubMed  Google Scholar 

  212. Ohi G, Seki H, Maeda H, Yagyu H. Protective effect of selenite against methylmercury toxicity: observations concerning time, dose and route factors in the development of selenium attenuation. Ind Health. 1975;13(3):93–9.

    Article  CAS  Google Scholar 

  213. Carvalho CML, Chew Hashemy SI, Hashemy J, et al. Inhibition of the human thioredoxin system: a molecular mechanism of mercury toxicity. J Biol Chem. 2008;283(18):11,913–23.

    Article  CAS  Google Scholar 

  214. Mac Farquhar JK, Broussard DL, Melstrom P, Hutchinson R, Wolkin A, Martin C, Burk RF, Dunn JR, Green AL, Hammond R, Schaffner W, Jones TF. Acute selenium toxicity associated with a dietary supplement. Arch Intern Med. 2010;170:256–61.

    Article  Google Scholar 

  215. Richmond SJ, Gunadasa S, Bland M, Macpherson H. Copper bracelets and magnetic wrist straps for rheumatoid arthritis—analgesic and anti-inflammatory effects: a randomised double-blind placebo controlled crossover trial. PLoS One. 2013;8(9):e71529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Richmond SJ, Brown SR, Campion PD, Porter AJL, Moffett JAK, Jackson DA, Featherstone VA, Taylor AJ. Therapeutic effects of magnetic and copper bracelets in osteoarthritis: a randomised placebo-controlled crossover trial. Complement Ther Med. 2009;17(5–6):249–56.

    Article  PubMed  Google Scholar 

  217. Myers Hill G, Carlson SM. Copper and zinc nutritional issues for agricultural animal production. Biol Trace Elem Res. 2019;188:148–59.

    Article  CAS  Google Scholar 

  218. Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12:1161–208.

    Article  CAS  PubMed  Google Scholar 

  219. Kaneshiro B, Aeby T. Long-term safety, efficacy, and patient acceptability of the intrauterine Copper T-380A contraceptive device. Int J Womens Health. 2010;2:211–20.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Hardeman J, Weiss BD. Intrauterine devices: an update. Am Fam Physician. 2014;89:445–50.

    PubMed  Google Scholar 

  221. Melnik BC, Plewig G, Daldrup T, Borchard F, Pfeiffer B, Zahn H. Green hair: guidelines for diagnosis and therapy. J Am Acad Dermatol. 1986;15(5 Pt 1):1065–8.

    Article  CAS  PubMed  Google Scholar 

  222. Tosti A, Mattioli D, Misciali C. Green hair caused by copper present in cosmetic plant extracts. Dermatologica. 1991;182:204–5.

    Article  CAS  PubMed  Google Scholar 

  223. Lampe RM, Henderson AL, Hansen GH. Green hair. JAMA. 1977;237:2092.

    Article  CAS  PubMed  Google Scholar 

  224. Marsh JM, Iveson R, Flagler MJ, Davis MG, Newland AB, Greis KD, Sun Y, Chaudhary T, Aistrup ER. Role of copper in photochemical damage to hair. Int J Cosmet Sci. 2014;36:32–8.

    Article  CAS  PubMed  Google Scholar 

  225. Marangon K, Devaraj S, Tirosh O, Packer L, Jialal I. Comparison of the effect of α-lipoic acid and α-tocopherol supplementation on measures of oxidative stress. Free Radic Biol Med. 1999;27:1114–21.

    Article  CAS  PubMed  Google Scholar 

  226. Brewer GJ. Copper excess, zinc deficiency, and cognition loss in Alzheimer’s disease. Biofactors. 2012;38:107–13.

    Article  CAS  PubMed  Google Scholar 

  227. Brewer GJ. The risk of copper toxicity contributing to cognitive decline in the aging population and to Alzheimer’s disease. J Am Coll Nutr. 2009;28:238–42.

    Article  PubMed  Google Scholar 

  228. Faller P. Copper and zinc binding to amyloid-beta: coordination, dynamics, aggregation, reactivity and metal-ion transfer. Chembiochem. 2009;10:2837–45.

    Article  CAS  PubMed  Google Scholar 

  229. Hureau C, Faller P. A beta-mediated ROS production by Cu ions: structural insights, mechanisms and relevance to Alzheimer’s disease. Biochimie. 2009;91:1212–7.

    Article  CAS  PubMed  Google Scholar 

  230. Kim SG, Kim KW, Park EW, Choi D. Silicon-induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Phytopathology. 2002;92:1095–103.

    Article  PubMed  Google Scholar 

  231. Martin KR. Chapter 14. Silicon: the health benefits of a metalloid. In: Sigel A, Sigel H, Sigel RKO, editors. Interrelations between essential metal ions and human diseases, Metal Ions in Life Sciences, vol. 13. New York: Springer; 2013. p. 451–73. https://doi.org/10.1007/978-94-007-7500-8_14. ISBN: 978-94-007-7499-5.

    Chapter  Google Scholar 

  232. Barel A, Calomme M, Timchenko A, De Paepe K, Demeester N, Rogiers V, Clarys P, Vanden BD. Effect of oral intake of choline-stabilized orthosilicic acid on skin, nails and hair in women with photodamaged skin. Arch Dermatol Res. 2005;297:147–53.

    Article  CAS  PubMed  Google Scholar 

  233. Fabre B, Geay B, Beaufils P. Thiaminase activity in Equisetum arvense and its extracts. Plant Med Phytother. 1993;26:190–7.

    CAS  Google Scholar 

  234. Food and Nutrition Board, Institute of Medicine. Dietary reference intakes for energy, carbohydrates, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Washington DC: National Academies Press; 2002.

    Google Scholar 

  235. American Academy of Pediatrics Committee on Nutrition. Breastfeeding and the use of human milk. Pediatrics. 2012;129:e827–41.

    Article  Google Scholar 

  236. St-Onge MP, Gallagher D. Body composition changes with aging: the cause or the result of alterations in metabolic rate and macronutrient oxidation? Nutrition. 2010;26:152–5.

    Article  CAS  PubMed  Google Scholar 

  237. Javed F, He Q, Davidson LE, Thornton JC, Albu J, Boxt L, Krasnow N, Elia M, Kang P, Heshka S, Gallagher D. Brain and high metabolic rate organ mass: contributions to resting energy expenditure beyond fat-free mass. Am J Clin Nutr. 2010;91:907–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Lynfield YL. Effect of pregnancy on the human hair cycle. J Invest Dermatol. 1960;35:323–7.

    Article  CAS  PubMed  Google Scholar 

  239. Barzilai D, Paldi E. A critical review of the Chiari-Frommel syndrome. Gynaecologia. 1966;162:216–24.

    CAS  PubMed  Google Scholar 

  240. Matsuzaki S, Endo M, Ueda Y, Mimura K, Kakigano A, Egawa-Takata T, Kumasawa K, Yoshino K, Kimura T. A case of acute Sheehan’s syndrome and literature review: a rare but life-threatening complication of postpartum hemorrhage. BMC Pregnancy Childbirth. 2017;17:188.

    Article  PubMed  PubMed Central  Google Scholar 

  241. Ippen M, Ippen H. Approaches to a prophylaxis of skin ageing. J Soc Cosmet Chemists. 1965;16:305–8.

    Google Scholar 

  242. Solly S. Clinical lectures on paralysis. Lancet. 1856;ii:641–3.

    Article  Google Scholar 

  243. Mosley JG, Gibbs CC. Premature grey hair and hair loss among smokers: a new opportunity for health education? BMJ. 1996;313:1616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Trüeb RM. Association between smoking and hair loss: another opportunity for health education against smoking? Dermatology. 2003;206:189–91.

    Article  PubMed  CAS  Google Scholar 

  245. Hayakawa K, Shimizu T, Ohba Y, et al. Intrapair differences of physical aging and longevity in identical twins. Acta Genet Med Gemellol (Roma). 1992;41:177–85.

    Article  CAS  Google Scholar 

  246. Su L-S, Chen TH-H. Association of androgenetic alopecia with smoking and its prevalence among Asian men. Arch Dermatol. 2007;143:1401–6.

    Article  PubMed  Google Scholar 

  247. Tur E, Yosipovitch G, Oren-Vulfs S. Chronic and acute effects of cigarette smoking on skin blood flow. Angiology. 1992;43:328–35.

    Article  CAS  PubMed  Google Scholar 

  248. Raitio A, Risteli J, Väjäkangas K, Oikarinen A. Evidence of disturbed collagen metabolism in smokers—a possible etiologic factor for accelerated skin aging. J Invest Dermatol. 2000;114:822.

    Google Scholar 

  249. Laurent P, Janoff A, Kagan HM. Cigarette smoke blocks cross-linking of elastin in vitro. Annu Rev Respir Dis. 1983;127:189–94.

    CAS  Google Scholar 

  250. Osawa Y, Tochigi B, Tochigi M, et al. Aromatase inhibitors in cigarette smoke, tobacco leaves and other plants. J Enzyme Inhib. 1990;4:187–200.

    Article  CAS  PubMed  Google Scholar 

  251. Dardour JC, Pugash E, Aziza R. The one-stage preauricular flap for male pattern baldness: long-term results and risk factors. Plast Reconstr Surg. 1988;81:907–12.

    Article  CAS  PubMed  Google Scholar 

  252. Haley NJ, Hoffmann D. Analysis for nicotine and cotinine in hair to determine cigarette smoker status. Clin Chem. 1985;31:1598–600.

    Article  CAS  PubMed  Google Scholar 

  253. Liu CS, Kao SH, Wei YH. Smoking-associated mitochondrial DNA mutations in human hair follicles. Environ Mol Mutagen. 1997;30:47–55.

    Article  CAS  PubMed  Google Scholar 

  254. Yin L, Morita A, Tsuji T. Alterations of extracellular matrix induced by tobacco smoke extract. Arch Dermatol Res. 2000;292:188–94.

    Article  CAS  PubMed  Google Scholar 

  255. Philpott MP, Sander DA, Bowen J, Kealey T. Effects of interleukins, colony stimulating factor and tumour necrosis factor on human hair follicle growth in vitro: a possible role for interleukin-1 and tumour necrosis factor-α in alopecia areata. Br J Dermatol. 1996;135:942–8.

    Article  CAS  PubMed  Google Scholar 

  256. Naito A, Midorikawa T, Yoshino T, Ohdera M. Lipid peroxides induce early onset of catagen phase in murine hair cycles. Int J Mol Med. 2008;22:725–9.

    CAS  PubMed  Google Scholar 

  257. Bahta AW, Farjo N, Farjo B, Philpott M. Premature senescence of balding dermal papilla cells in vitro is associated with p16(INK4a) expression. J Invest Dermatol. 2008;128(5):1088–94.

    Article  CAS  PubMed  Google Scholar 

  258. Upton JH, Hannen RF, Bahta AW, Farjo N, Farjo B, Philpott MP. Oxidative stress-associated senescence in dermal papilla cells of men with androgenetic alopecia. J Invest Dermatol. 2015;135:1244–52.

    Article  CAS  PubMed  Google Scholar 

  259. D’Agostini F, Balansky R, Pesce C, et al. Induction of alopecia in mice exposed to cigarette smoking. Toxicol Lett. 2000;114:117–23.

    Article  PubMed  Google Scholar 

  260. D’Agostini F, Fiallo P, Pennisi TM, De Flora S. Chemoprevention of smoke-induced alopecia in mice by oral administration of L-cystine and vitamin B6. J Dermatol Sci. 2007;46:189–98.

    Article  PubMed  CAS  Google Scholar 

  261. Reicks M, Calvert RJ, Hathcock JN. Effects of prolonged acetaminophen ingestion and dietary methionine on mouse liver glutathione. Drug Nutr Interact. 1988;5:351–63.

    CAS  PubMed  Google Scholar 

  262. Cruz-Hernandez C, Oliveira M, Pescia G, Moulin J, Masserey-Elmelegy I, Dionisi F, Destaillats F. Lipase inhibitor orlistat decreases incorporation of eicosapentaenoic and docosahexaenoic acids in rat tissues. Nutr Res. 2010;30:134–40.

    Article  CAS  PubMed  Google Scholar 

  263. Moss M. Drugs as anti-nutrients. J Nutr Environ Med. 2007;16:149–66.

    Article  CAS  Google Scholar 

  264. Henley S. Women on the pill are opening up a small case of side effects every morning. Body Forum. 1977;2:20.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph M. Trüeb .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trüeb, R.M. (2020). The Hair Cycle and Its Relation to Nutrition. In: Nutrition for Healthy Hair. Springer, Cham. https://doi.org/10.1007/978-3-030-59920-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59920-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59919-5

  • Online ISBN: 978-3-030-59920-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics