Skip to main content

Two-Way Jumping Automata

  • Conference paper
  • First Online:
Frontiers in Algorithmics (FAW 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12340))

Included in the following conference series:

Abstract

The recently introduced one-way jumping automata are strictly more powerful than classical finite automata (FA) while maintaining decidability in most of the important cases. We investigate the extension of the new processing mode to two-way deterministic finite automata (2DFA), resulting in deterministic finite automata which can jump to the nearest letter they can read, with jumps allowed in either direction. We show that two-way jumping automata are strictly more powerful than one-way jumping ones and that alternative extensions of 2DFA with jumping mode lead to equivalent machines. We also prove that the class of languages accepted by the new model is not closed under the usual language operations. Finally we show how one could change the model to terminate on every input.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beier, S., Holzer, M.: Decidability of right one-way jumping finite automata. In: Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS, vol. 11088, pp. 109–120. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98654-8_9

    Chapter  Google Scholar 

  2. Beier, S., Holzer, M.: Nondeterministic right one-way jumping finite automata (extended abstract). In: Hospodár, M., Jirásková, G., Konstantinidis, S. (eds.) DCFS 2019. LNCS, vol. 11612, pp. 74–85. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23247-4_5

    Chapter  Google Scholar 

  3. Beier, S., Holzer, M.: Properties of right one-way jumping finite automata. Theoret. Comput. Sci. 798, 78–94 (2019)

    Article  MathSciNet  Google Scholar 

  4. Bensch, S., Bordihn, H., Holzer, M., Kutrib, M.: On input-revolving deterministic and nondeterministic finite automata. Inf. Comput. 207(11), 1140–1155 (2009)

    Article  MathSciNet  Google Scholar 

  5. Chigahara, H., Fazekas, S.Z., Yamamura, A.: One-way jumping finite automata. Int. J. Found. Comput. Sci. 27(3), 391–405 (2016)

    Article  MathSciNet  Google Scholar 

  6. Fazekas, S.Z., Hoshi, K., Yamamura, A.: Enhancement of automata with jumping modes. In: Castillo-Ramirez, A., de Oliveira, P.P.B. (eds.) AUTOMATA 2019. LNCS, vol. 11525, pp. 62–76. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20981-0_5

    Chapter  MATH  Google Scholar 

  7. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Boston (1979)

    MATH  Google Scholar 

  8. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting automata. In: Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 283–292. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60249-6_60

    Chapter  Google Scholar 

  9. Meduna, A., Zemek, P.: Jumping finite automata. Int. J. Found. Comput. Sci. 23(7), 1555–1578 (2012). https://doi.org/10.1142/S0129054112500244

    Article  MathSciNet  MATH  Google Scholar 

  10. Nagy, B., Otto, F.: Finite-state acceptors with translucent letters. In: BILC 2011–1st International Workshop on AI Methods for Interdisciplinary Research in Language and Biology, ICAART 2011 – 3rd International Conference on Agents and Artificial Intelligence, pp. 3–13 (2011)

    Google Scholar 

  11. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Dev. 3(2), 114–125 (1959)

    Article  MathSciNet  Google Scholar 

  12. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM J. Res. Dev. 3(2), 198–200 (1959)

    Article  MathSciNet  Google Scholar 

  13. Sipser, M.: Introduction to the Theory of Computation, 2nd edn. Course Technology, Boston (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szilárd Zsolt Fazekas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fazekas, S.Z., Hoshi, K., Yamamura, A. (2020). Two-Way Jumping Automata. In: Li, M. (eds) Frontiers in Algorithmics. FAW 2020. Lecture Notes in Computer Science(), vol 12340. Springer, Cham. https://doi.org/10.1007/978-3-030-59901-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59901-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59900-3

  • Online ISBN: 978-3-030-59901-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics