Skip to main content

Extended Capture Range of Rigid 2D/3D Registration by Estimating Riemannian Pose Gradients

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12436))

Included in the following conference series:

Abstract

Traditional intensity-based 2D/3D registration requires near-perfect initialization in order for image similarity metrics to yield meaningful updates of X-ray pose and reduce the likelihood of getting trapped in a local minimum. The conventional approaches strongly depend on image appearance rather than content, and therefore, fail in revealing large pose offsets that substantially alter the appearance of the same structure. We complement traditional similarity metrics with a convolutional neural network-based (CNN-based) registration solution that captures large-range pose relations by extracting both local and contextual information, yielding meaningful X-ray pose updates without the need for accurate initialization. To register a 2D X-ray image and a 3D CT scan, our CNN accepts a target X-ray image and a digitally reconstructed radiograph at the current pose estimate as input and iteratively outputs pose updates in the direction of the pose gradient on the Riemannian Manifold. Our approach integrates seamlessly with conventional image-based registration frameworks, where long-range relations are captured primarily by our CNN-based method while short-range offsets are recovered accurately with an image similarity-based method. On both synthetic and real X-ray images of the human pelvis, we demonstrate that the proposed method can successfully recover large rotational and translational offsets, irrespective of initialization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berger, M., et al.: Marker-free motion correction in weight-bearing cone-beam CT of the knee joint. Med. Phys. 43(3), 1235–1248 (2016)

    Google Scholar 

  2. Bier, B., et al.: Learning to detect anatomical landmarks of the pelvis in X-rays from arbitrary views. Int. J. Comput. Assist. Radiol. Surg. 1–11 (2019)

    Google Scholar 

  3. Bier, B., et al.: X-ray-transform invariant anatomical landmark detection for pelvic trauma surgery. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 55–63. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_7

    Chapter  Google Scholar 

  4. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

    Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  6. Esteban, J., Grimm, M., Unberath, M., Zahnd, G., Navab, N.: Towards fully automatic X-ray to CT registration. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, pp. 631–639. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-32226-7_70

  7. Fotouhi, J., et al.: Pose-aware C-arm for automatic re-initialization of interventional 2D/3D image registration. Int. J. Comput. Assist. Radiol. Surg. 12(7), 1221–1230 (2017)

    Google Scholar 

  8. Gong, R.H., Stewart, J., Abolmaesumi, P.: Multiple-object 2-D-3-D registration for noninvasive pose identification of fracture fragments. IEEE Trans. Biomed. Eng. 58(6), 1592–1601 (2011)

    Google Scholar 

  9. Grupp, R., et al.: Automatic annotation of hip anatomy in fluoroscopy for robust and efficient 2D/3D registration. arXiv preprint arXiv:1911.07042 (2019)

  10. Grupp, R.B., et al.: Pose estimation of periacetabular osteotomy fragments with intraoperative X-ray navigation. arXiv preprint arXiv:1903.09339 (2019)

  11. Hajek, J., Unberath, M., Fotouhi, J., Bier, B., Lee, S.C., Osgood, G., Maier, A., Armand, M., Navab, N.: Closing the calibration loop: an inside-out-tracking paradigm for augmented reality in orthopedic surgery. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 299–306. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_35

    Chapter  Google Scholar 

  12. Hou, B., et al.: Deep pose estimation for image-based registration. AR (2018)

    Google Scholar 

  13. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  14. Ketcha, M., et al.: Multi-stage 3D–2D registration for correction of anatomical deformation in image-guided spine surgery. Phys. Med. Biol. 62(11), 4604 (2017)

    Google Scholar 

  15. Lemieux, L., Jagoe, R., Fish, D., Kitchen, N., Thomas, D.: A patient-to-computed-tomography image registration method based on digitally reconstructed radiographs. Med. Phys. 21(11), 1749–1760 (1994)

    Google Scholar 

  16. Liao, H., Lin, W.A., Zhang, J., Zhang, J., Luo, J., Zhou, S.K.: Multiview 2D/3D rigid registration via a point-of-interest network for tracking and triangulation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12638–12647 (2019)

    Google Scholar 

  17. Liu, L., Ecker, T., Schumann, S., Siebenrock, K., Nolte, L., Zheng, G.: Computer assisted planning and navigation of periacetabular osteotomy with range of motion optimization. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 643–650. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10470-6_80

    Chapter  Google Scholar 

  18. Liu, R., et al.: An intriguing failing of convolutional neural networks and the CoordConv solution. In: Advances in Neural Information Processing Systems, pp. 9628–9639 (2018)

    Google Scholar 

  19. Markelj, P., Tomaževič, D., Likar, B., Pernuš, F.: A review of 3D/2D registration methods for image-guided interventions. Med. Image Anal. 16(3), 642–661 (2012)

    Google Scholar 

  20. Miao, S., Wang, Z.J., Liao, R.: A CNN regression approach for real-time 2D/3D registration. IEEE Trans. Med. Imaging 35(5), 1352–1363 (2016)

    Google Scholar 

  21. Miolane, N., Mathe, J., Donnat, C., Jorda, M., Pennec, X.: Geomstats: a python package for Riemannian geometry in machine learning (2018)

    Google Scholar 

  22. Murray, R.M.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (2017)

    Google Scholar 

  23. Otake, Y., et al.: Intraoperative image-based multiview 2D/3D registration for image-guided orthopaedic surgery: incorporation of fiducial-based C-arm tracking and GPU-acceleration. IEEE Trans. Med. Imaging 31(4), 948–962 (2012)

    Google Scholar 

  24. Ruijters, D., ter Haar Romeny, B.M., Suetens, P.: Vesselness-based 2D–3D registration of the coronary arteries. Int. J. Comput. Assist. Radiol. Surg. 4(4), 391–397 (2009)

    Google Scholar 

  25. Troelsen, A., Elmengaard, B., Søballe, K.: A new minimally invasive transsartorial approach for periacetabular osteotomy. JBJS 90(3), 493–498 (2008)

    Google Scholar 

  26. Unberath, M., et al.: Enabling machine learning in X-ray-based procedures via realistic simulation of image formation. Int. J. Comput. Assist. Radiol. Surg. 1–12 (2019)

    Google Scholar 

  27. Unberath, M., et al.: DeepDRR – a catalyst for machine learning in fluoroscopy-guided procedures. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 98–106. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_12

    Chapter  Google Scholar 

  28. Yaniv, Z.: Registration for orthopaedic interventions. In: Zheng, G., Li, S. (eds.) Computational Radiology for Orthopaedic Interventions. LNCVB, vol. 23, pp. 41–70. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-23482-3_3

    Chapter  Google Scholar 

  29. Yao, J., et al.: A C-arm fluoroscopy-guided progressive cut refinement strategy using a surgical robot. Comput. Aided Surg.: Official J. Int. Soc. Comput. Aided Surg. (ISCAS) 5(6), 373–390 (2000)

    Google Scholar 

Download references

Acknowledgement

This work is supported in part by NIH grant (R21EB028505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhao Gu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 15460 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gu, W., Gao, C., Grupp, R., Fotouhi, J., Unberath, M. (2020). Extended Capture Range of Rigid 2D/3D Registration by Estimating Riemannian Pose Gradients. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds) Machine Learning in Medical Imaging. MLMI 2020. Lecture Notes in Computer Science(), vol 12436. Springer, Cham. https://doi.org/10.1007/978-3-030-59861-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59861-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59860-0

  • Online ISBN: 978-3-030-59861-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics