Skip to main content

Unsupervised MRI Homogenization: Application to Pediatric Anterior Visual Pathway Segmentation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12436))

Abstract

Deep learning strategies have become ubiquitous optimization tools for medical image analysis. With the appropriate amount of data, these approaches outperform classic methodologies in a variety of image processing tasks. However, rare diseases and pediatric imaging often lack extensive data. Specially, MRI are uncommon because they require sedation in young children. Moreover, the lack of standardization in MRI protocols introduces a strong variability between different datasets. In this paper, we present a general deep learning architecture for MRI homogenization that also provides the segmentation map of an anatomical region of interest. Homogenization is achieved using an unsupervised architecture based on variational autoencoder with cycle generative adversarial networks, which learns a common space (i.e. a representation of the optimal imaging protocol) using an unpaired image-to-image translation network. The segmentation is simultaneously generated by a supervised learning strategy. We evaluated our method segmenting the challenging anterior visual pathway using three brain T1-weighted MRI datasets (variable protocols and vendors). Our method significantly outperformed a non-homogenized multi-protocol U-Net.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Collewet, G., Strzelecki, M., Mariette, F.: Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn. Reson. Imaging 22, 81–91 (2004)

    Article  Google Scholar 

  2. Vovk, U., Pernus, F., Likar, B.: A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans. Med. Imaging 26, 405–421 (2007)

    Article  Google Scholar 

  3. Nyul, L.G., Udupa, J.K., Zhang, X.: New variants of a method of MRI scale standardization. IEEE Trans. Med. Imaging 19, 143–150 (2000)

    Article  Google Scholar 

  4. Shah, M., et al.: Evaluating intensity normalization on MRIs of human brain with multiple sclerosis. Med. Image Anal. 15, 267–282 (2011)

    Article  Google Scholar 

  5. Sun, X., Shi, L., Luo, Y., Yang, W., Li, H., Liang, P., et al.: Histogram-based normalization technique on human brain magnetic resonance images from different acquisitions. BioMed. Eng. OnLine. 14, 73 (2015)

    Article  Google Scholar 

  6. Jager, F., Hornegger, J.: Nonrigid registration of joint histograms for intensity standardization in magnetic resonance imaging. IEEE Trans. Med. Imaging 28, 137–150 (2009)

    Article  Google Scholar 

  7. Roy, S., Carass, A., Prince, J.L.: Patch based intensity normalization of brain MR images. In: 2013 IEEE 10th International Symposium on Biomedical Imaging, pp. 342–345. IEEE (2013)

    Google Scholar 

  8. Shinohara, R.T., et al.: Statistical normalization techniques for magnetic resonance imaging. Neuroimage Clin. 6, 9–19 (2014)

    Article  Google Scholar 

  9. Zhang, J., Saha, A., Soher, B.J., Mazurowski, M.A.: Automatic deep learning-based normalization of breast dynamic contrast-enhanced magnetic resonance images. (2018), arXiv:1807.02152 [cs]

  10. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  11. Simkó, A., Löfstedt, T., Garpebring, A., Nyholm, T., Jonsson, J.: A Generalized Network for MRI Intensity Normalization. (2019), arXiv:1909.05484 [eess]

  12. Tustison, N.J., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010)

    Article  Google Scholar 

  13. Jacobsen, N., Deistung, A., Timmann, D., Goericke, S.L., Reichenbach, J.R., Güllmar, D.: Analysis of intensity normalization for optimal segmentation performance of a fully convolutional neural network. Z. Med. Phys. 29, 128–138 (2019)

    Article  Google Scholar 

  14. Liu, M.-Y., Tuzel, O.: Coupled generative adversarial networks. In: Advances in Neural Information Processing Systems, Curran Associates, Inc. 29, pp. 469–477 (2016)

    Google Scholar 

  15. Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Presented at the Proceedings of the IEEE International Conference on Computer Vision, IEEE (2017)

    Google Scholar 

  16. Liu, M.-Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: Advances in Neural Information Processing Systems, Curran Associates, Inc. 30, pp. 700–708 (2017)

    Google Scholar 

  17. Wolterink, J.M., Dinkla, A.M., Savenije, M.H.F., Seevinck, P.R., van den Berg, C.A.T., Išgum, I.: Deep MR to CT synthesis using unpaired data. In: Tsaftaris, S.A., Gooya, A., Frangi, A.F., Prince, J.L. (eds.) SASHIMI 2017. LNCS, vol. 10557, pp. 14–23. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68127-6_2

    Chapter  Google Scholar 

  18. Yang, H., et al.: Unpaired brain MR-to-CT synthesis using a structure-constrained cycleGAN. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 174–182. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_20

    Chapter  Google Scholar 

  19. Welander, P., Karlsson, S., Eklund, A.: Generative Adversarial Networks for Image-to-Image Translation on Multi-Contrast MR Images - A Comparison of CycleGAN and UNIT. (2018), arXiv:1806.07777 [cs]

  20. Fortin, J.-P., et al.: Harmonization of multi-site diffusion tensor imaging data. NeuroImage. 161, 149–170 (2017)

    Article  Google Scholar 

  21. Blumberg, S.B., Palombo, M., Khoo, C.S., Tax, C.M.W., Tanno, R., Alexander, D.C.: Multi-stage prediction networks for data harmonization. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 411–419. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_45

    Chapter  Google Scholar 

  22. Moyer, D., Steeg, G.V., Tax, C.M.W., Thompson, P.M.: Scanner invariant representations for diffusion MRI harmonization. Magnetic Resonance in Medicine, (2020)

    Google Scholar 

  23. Koppers, S., Bloy, L., Berman, J.I., Tax, C.M.W., Edgar, J.C., Merhof, D.: Spherical harmonic residual network for diffusion signal harmonization. In: Bonet-Carne, E., Grussu, F., Ning, L., Sepehrband, F., Tax, C.M.W. (eds.) MICCAI 2019. MV, pp. 173–182. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05831-9_14

    Chapter  Google Scholar 

  24. Noble, J.H., Dawant, B.M.: An atlas-navigated optimal medial axis and deformable model algorithm (NOMAD) for the segmentation of the optic nerves and chiasm in MR and CT images. Med. Image Anal. 15, 877–884 (2011)

    Article  Google Scholar 

  25. Yang, X., et al.: Weighted partitioned active shape model for optic pathway segmentation in MRI. In: Linguraru, M.G., et al. (eds.) CLIP 2014. LNCS, vol. 8680, pp. 109–117. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13909-8_14

    Chapter  Google Scholar 

  26. Mansoor, A., et al.: Deep learning guided partitioned shape model for anterior visual pathway segmentation. IEEE Trans. Med. Imaging 35, 1856–1865 (2016)

    Article  Google Scholar 

  27. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein GANs. In: Advances in Neural Information Processing Systems, Curran Associates, Inc. 30, pp. 5767–5777 (2017)

    Google Scholar 

  28. Fortin, J.-P., et al.: Harmonization of cortical thickness measurements across scanners and sites. NeuroImage. 167, 104–120 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Tor-Diez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tor-Diez, C., Porras, A.R., Packer, R.J., Avery, R.A., Linguraru, M.G. (2020). Unsupervised MRI Homogenization: Application to Pediatric Anterior Visual Pathway Segmentation. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds) Machine Learning in Medical Imaging. MLMI 2020. Lecture Notes in Computer Science(), vol 12436. Springer, Cham. https://doi.org/10.1007/978-3-030-59861-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59861-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59860-0

  • Online ISBN: 978-3-030-59861-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics