Skip to main content

Non-asymptotic-time Dynamics

  • Chapter
  • First Online:
Physics of Biological Oscillators

Abstract

Traditional analysis of dynamics concerns coordinate-invariant features of the long-time-asymptotic behaviour of a system. Using the non-autonomous Adler equation with slowly varying forcing, we illustrate three of the limitations of this traditional approach. We discuss an alternative, “slow-fast finite-time dynamical systems” approach, that is more suitable for slowly time-dependent one-dimensional phase dynamics, and is likely to be suitable for more general dynamics of open systems involving two or more timescales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics (Springer, Berlin, 1995)

    Google Scholar 

  2. A. Berger, T.S. Doan, S. Siegmund, Nonautonomous finite-time dynamics. Discret. Contin. Dyn. Sys. B 9(3 & 4), 463–492 (2008)

    MathSciNet  MATH  Google Scholar 

  3. L.H. Duc, J.P. Chávez, T.S. Doan, S. Siegmund, Finite-time Lyapunov exponents and metabolic control coefficients for threshold detection of stimulus-response curves. J. Biol. Dyn. 10(1), 379–394 (2016)

    Article  MathSciNet  Google Scholar 

  4. R.M. Dudley, Uniform Central Limit Theorems. Cambridge Studies in Advanced Mathematics. Cambridge University Press (1999)

    Google Scholar 

  5. P. Giesl, J. McMichen, Determination of the area of exponential attraction in one-dimensional finite-time systems using meshless collocation. Discret. Contin. Dyn. Sys. B 23(4), 1835–1850 (2018)

    MathSciNet  MATH  Google Scholar 

  6. A. Glutsyuk, L. Rybnikov, On families of differential equations on two-torus with all phase-lock areas. Nonlinearity 30(1), 61–72 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  7. J. Guckenheimer, Y.S. Ilyashenko, The duck and the devil: canards on the staircase. Mosc. Math. J. 1(1), 27–47 (2001)

    Article  MathSciNet  Google Scholar 

  8. Z. Hagos, T. Stankovski, J. Newman, T. Pereira, P.V.E. McClintock, A. Stefanovska, Synchronization transitions caused by time-varying coupling functions. Philos. T. R. Soc. A 377(2160), 20190275 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  9. G. Haller, Finding finite-time invariant manifolds in two-dimensional velocity fields. Chaos 10(1), 99–108 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  10. G. Haller, Lagrangian coherent structures. Annu. Rev. Fluid Mech. 47(1), 137–162 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  11. G. Haller, G. Yuan, Lagrangian coherent structures and mixing in two-dimensional turbulence. Phys. D 147(3), 352–370 (2000)

    Article  MathSciNet  Google Scholar 

  12. Y.S. Ilyashenko, D.A. Ryzhov, D.A. Filimonov, Phase-lock effect for equations modeling resistively shunted Josephson junctions and for their perturbations. Funct. Anal. Appl. 45(3), 192 (2011)

    Article  MathSciNet  Google Scholar 

  13. S. Ivić, I. Mrša Haber, T. Legović, Lagrangian coherent structures in the Rijeka Bay current field. Acta Adriat. 58(3), 373–389 (2017)

    Google Scholar 

  14. R.V. Jensen, Synchronization of driven nonlinear oscillators. Am. J. Phys. 70(6), 607–619 (2002)

    Article  ADS  Google Scholar 

  15. D. Karrasch, Linearization of hyperbolic finite-time processes. J. Differ. Equ. 254(1), 256–282 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  16. B. Kaszás, U. Feudel, T. Tél, Leaking in history space: a way to analyze systems subjected to arbitrary driving. Chaos 28(3), 033,612 (2018)

    Google Scholar 

  17. A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  18. P.E. Kloeden, M. Rasmussen, Nonautonomous Dynamical Systems (American Mathematical Society, Providence, 2011)

    Book  Google Scholar 

  19. C. Kuehn, Multiple Time Scale Dynamics, Applied Mathematical Sciences, vol. 191 (Springer, Cham, 2015)

    Book  Google Scholar 

  20. Y. Lehahn, F. d’Ovidio, M. Lévy, E. Heifetz, Stirring of the northeast Atlantic spring bloom: A Lagrangian analysis based on multisatellite data. J. Geophys. Res. C 112(C8) (2007)

    Google Scholar 

  21. F. Lekien, S.C. Shadden, J.E. Marsden, Lagrangian coherent structures in \(n\)-dimensional systems. J. Math. Phys. 48(6), 065,404 (2007)

    Google Scholar 

  22. M. Lucas, D. Fanelli, A. Stefanovska, Nonautonomous driving induces stability in network of identical oscillators. Phys. Rev. E 99(1), 012,309 (2019)

    Google Scholar 

  23. M. Lucas, J. Newman, A. Stefanovska, Stabilization of dynamics of oscillatory systems by nonautonomous perturbation. Phys. Rev. E 97(4), 042,209 (2018)

    Google Scholar 

  24. M. Lucas, J.M.I. Newman, A. Stefanovska, Synchronisation and non-autonomicity. In: Stefanovska A., McClintock P.V.E. (eds) Physics of Biological Oscillators. Understanding Complex Systems, pp. 85–110, (Springer, Cham, 2021). https://doi.org/10.1007/978-3-030-59805-1_6

  25. A.M. Lyapunov, The general problem of the stability of motion. Int. J. Control 55(3), 531–534 (1992)

    Article  MathSciNet  Google Scholar 

  26. R.L. Moorcroft, S.M. Fielding, Criteria for shear banding in time-dependent flows of complex fluids. Phys. Rev. Lett. 110(8), 086,001 (2013)

    Google Scholar 

  27. J. Newman, M. Lucas, A. Stefanovska, Stabilisation of cyclic processes by slowly varying forcing (2019). Submitted

    Google Scholar 

  28. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, vol. 12 (Cambridge University Press, Cambridge, UK, 2003)

    Book  Google Scholar 

  29. H. Poincaré, Mémoire sur les courbes définies par une équation différentielle (J. Math, Pures Appl, 1881)

    MATH  Google Scholar 

  30. A.G. Ramos et al., Lagrangian coherent structure assisted path planning for transoceanic autonomous underwater vehicle missions. Sci. Rep. 8, 4575 (2018)

    Article  ADS  Google Scholar 

  31. M. Rasmussen, Finite-time attractivity and bifurcation for nonautonomous differential equations. Differ. Equ. Dynam. Syst. 18(1), 57–78 (2010)

    Article  MathSciNet  Google Scholar 

  32. S.C. Shadden, J.O. Dabiri, J.E. Marsden, Lagrangian analysis of fluid transport in empirical vortex ring flows. Phys. Fluids 18(4), 047,105 (2006)

    Google Scholar 

  33. A. Stefanovska, P.T. Clemson, Y.F. Suprunenko, Introduction to chronotaxic systems – systems far from thermodynamics equilibrium that adjust their clocks. In: Wunner G., Pelster A. (eds) Selforganization in Complex Systems: the Past, Present, and Future of Synergetics. Understanding Complex Systems, pp. 227–246, (Springer, Cham, 2016). https://doi.org/10.1007/978-3-319-27635-9_14

  34. S.H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, 2nd edn. (Westview Press, Boulder, 2014)

    MATH  Google Scholar 

  35. E. Tew Kai, V. Rossi, J. Sudre, H. Weimerskirch, C. Lopez, E. Hernandez-Garcia, F. Marsac, V. Garçon, Top marine predators track Lagrangian coherent structures. PNAS 106(20), 8245–8250 (2009)

    Google Scholar 

  36. J. Töger, M. Kanski, M. Carlsson, S.J. Kovács, G. Söderlind, H. Arheden, E. Heiberg, Vortex ring formation in the left ventricle of the heart: analysis by 4D flow MRI and Lagrangian coherent structures. Ann. Biomed. Eng. 40(12), 2652–2662 (2012)

    Google Scholar 

  37. M. Ushio, C.H. Hsieh, R. Masuda, E.R. Deyle, H. Ye, C.W. Chang, G. Sugihara, M. Kondoh, Fluctuating interaction network and time-varying stability of a natural fish community. Nature 554(7692), 360 (2018)

    Article  ADS  Google Scholar 

  38. N. Wang, U. Ramirez, F. Flores, S. Datta-Barua, Lagrangian coherent structures in the thermosphere: Predictive transport barriers. Geophys. Res. Lett. 44(10), 4549–4557 (2017)

    Google Scholar 

Download references

Acknowledgements

We are grateful for the comments of three anonymous referees, which have led to considerable improvement of this manuscript. This study has been supported by an EPSRC Doctoral Prize Fellowship, the DFG grant CRC 701, the EPSRC grant EP/M006298/1, and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 642563. Codes for the numerics carried out in this chapter are available upon request and are deposited on the Lancaster Publications and Research system Pure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian M. I. Newman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Newman, J.M.I., Lucas, M., Stefanovska, A. (2021). Non-asymptotic-time Dynamics. In: Stefanovska, A., McClintock, P.V.E. (eds) Physics of Biological Oscillators. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-59805-1_7

Download citation

Publish with us

Policies and ethics