Skip to main content

Phase Coherence Between Cardiovascular Oscillations in Malaria: The Basis for a Possible Diagnostic Test

  • Chapter
  • First Online:
Physics of Biological Oscillators

Abstract

We show how a non-autonomous dynamics approach using time-resolved analyses of power spectra and phase coherence can help in the noninvasive diagnosis of malaria. The work is based on studying oscillations in blood flow and the variability of the heart and respiratory frequencies. The model used assumes that the heart and respiration are two oscillatory pumps with variable frequencies and that the vascular resistance also changes in an oscillatory manner. Red blood cells circulating through the system deliver oxygen to each cell. Malaria changes the red blood cells so that this delivery is compromised. The oscillatory properties of both pumps are also affected. We quantify the latter and compare three groups of subjects: febrile malaria patients (37); non-febrile malaria patients (10); and healthy controls (51). For each subject, time series of skin blood flow, respiratory effort, cardiac activity (ECG) and skin temperature were recorded simultaneously over an interval of 30 minutes. The oscillatory components within the range 0.005–2 Hz were analysed and their degree of coordination throughout the cardiovascular system was assessed by wavelet phase coherence analysis. It is shown that malaria, either febrile or non-febrile, substantially reduces the coordination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y.A. Abdulhameed, Nonlinear cardiovascular oscillatory dynamics in malaria. Ph.D. thesis, Lancaster University (2020)

    Google Scholar 

  2. O.O. Aina, C.O. Agomo, Y.A. Olukosi, H.I. Okoh, B.A. Iwalokun, K.N. Egbuna, A.B. Orok, O. Ajibaye, V.N. Enya, S.K. Akindele et al., Malariometric survey of Ibeshe community in Ikorodu, Lagos state: dry season. Malar. Res. Treat. 2013 (2013)

    Google Scholar 

  3. A. Bandrivskyy, A. Bernjak, P.V.E. McClintock, A. Stefanovska, Wavelet phase coherence analysis: Application to skin temperature and blood flow. Cardiovasc. Engin. 4(1), 89–93 (2004)

    Article  Google Scholar 

  4. S.C. Beards, G.M. Joynt, J. Lipman, Hæmodynamic and oxygen transport response during exchange transfusion for severe falciparum malaria. Postgrad. Med. J. 70(829), 801–804 (1994)

    Article  Google Scholar 

  5. A. Bernjak, J. Cui, S. Iwase, T. Mano, A. Stefanovska, D.L. Eckberg, Human sympathetic outflows to skin and muscle target organs fluctuate concordantly over a wide range of time-varying frequencies. J. Physiol. (London) 590(2), 363–375 (2012)

    Article  Google Scholar 

  6. P.F. Binkley, E. Nunziata, G.J. Haas, S.D. Nelson, R.J. Cody, Parasympathetic withdrawal is an integral component of autonomic imbalance in congestive heart failure: demonstration in human subjects and verification in a paced canine model of ventricular failure. J. Am. Coll. Cardiol. 18(2), 464–472 (1991)

    Article  Google Scholar 

  7. D. Bruce-Hickman, Oxygen therapy for cerebral malaria. Travel Med. Infect. Dis. 9(5), 223–230 (2011)

    Article  Google Scholar 

  8. P.T. Clemson, G. Lancaster, A. Stefanovska, Reconstructing time-dependent dynamics. Proc. IEEE 104(2), 223–241 (2016)

    Article  Google Scholar 

  9. P.T. Clemson, A. Stefanovska, Discerning non-autonomous dynamics. Phys. Rep. 542(4), 297–368 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  10. P. Davies, I. Maconochie, The relationship between body temperature, heart rate and respiratory rate in children. Emerg. Med. J. 26(9), 641–643 (2009)

    Article  Google Scholar 

  11. M. English, R. Sauerwein, C. Waruiru, M. Mosobo, J. Obiero, B. Lowe, K. Marsh, Acidosis in severe childhood malaria. QJM: Int. J. Med. 90(4), 263–270 (1997)

    Google Scholar 

  12. J.B. Hinnant, L. Elmore-Staton, M. El-Sheikh, Developmental trajectories of respiratory sinus arrhythmia and preejection period in middle childhood. Dev. Psychobiol. 53(1), 59–68 (2011)

    Article  Google Scholar 

  13. A.E. Hramov, A.A. Koronovskii, V.I. Ponomarenko, M.D. Prokhorov, Detection of synchronization from univariate data using wavelet transform. Phys. Rev. E 75(5), 056,207 (2007)

    Google Scholar 

  14. D. Iatsenko, Nonlinear Mode Decomposition (Springer, Berlin, 2015)

    Google Scholar 

  15. D. Iatsenko, A. Bernjak, T. Stankovski, Y. Shiogai, P.J. Owen-Lynch, P.B.M. Clarkson, P.V.E. McClintock, A. Stefanovska, Evolution of cardio-respiratory interactions with age. Phil. Trans. R. Soc. Lond. A 371(1997), 20110,622 (2013)

    Google Scholar 

  16. D. Iatsenko, P.V.E. McClintock, A. Stefanovska, On the extraction of instantaneous frequencies from ridges in time-frequency representations of signals. Signal Proc. 125, 290–303 (2016)

    Article  Google Scholar 

  17. D. Iatsenko, A. Stefanovska, P.V.E. McClintock, Nonlinear mode decomposition: a noise-robust, adaptive, decomposition method. Phys. Rev. E. 92, 032,916 (2015)

    Google Scholar 

  18. Y. Imai, H. Kondo, T. Ishikawa, C.T. Lim, T. Yamaguchi, Modeling of hemodynamics arising from malaria infection. J. Biomech. 43, 1386–1393 (2010)

    Article  Google Scholar 

  19. P.G. Jayathilake, G. Liu, Z. Tan, B.C. Khoo, Numerical study on the dynamics and oxygen uptake of healthy and malaria-infected red blood cells. Adv. Appl. Math. Mech. 7(5), 549–568 (2015)

    Article  MathSciNet  Google Scholar 

  20. A.S. Karavaev, M.D. Prokhorov, V.I. Ponomarenko, A.R. Kiselev, V.I. Gridnev, E.I. Ruban, B.P. Bezruchko, Synchronization of low-frequency oscillations in the human cardiovascular system. Chaos 19(3), 033,112 (2009)

    Google Scholar 

  21. P.G. Katona, J. Felix, Respiratory sinus arrhythmia: noninvasive measure of parasympathetic cardiac control. J. Appl. Physiol. 39(5), 801–805 (1975)

    Article  Google Scholar 

  22. F. Krampa, Y. Aniweh, G. Awandare, P. Kanyong, Recent progress in the development of diagnostic tests for malaria. Diagnostics 7(3), 54 (2017)

    Google Scholar 

  23. P. Kvandal, S.A. Landsverk, A. Bernjak, A. Stefanovska, H.D. Kvernmo, K.A. Kirkebøen, Low frequency oscillations of the laser Doppler perfusion signal in human skin. Microvasc. Res. 72(3), 120–127 (2006)

    Article  Google Scholar 

  24. G. Lancaster, D. Iatsenko, A. Pidde, V. Ticcinelli, A. Stefanovska, Surrogate data for hypothesis testing of physical systems. Phys. Rep. (2018)

    Google Scholar 

  25. S. Lehtipalo, O. Winsö, L.O.D. Koskinen, G. Johansson, B. Biber, Cutaneous sympathetic vasoconstrictor reflexes for the evaluation of interscalene brachial plexus block. Acta Anaesthsiol. Scand. 44(8), 946–952 (2000)

    Article  Google Scholar 

  26. M. Malik, Heart rate variability. Ann. Noninvas. Electro. 1(2), 151–181 (1996)

    Article  Google Scholar 

  27. M.F. Meyer, C.J. Rose, J.O. Hülsmann, H. Schatz, M. Pfohl, M, Impaired 0.1-Hz vasomotion assessed by laser Doppler anemometry as an early index of peripheral sympathetic neuropathy in diabetes. Microvasc. Res. 65, 88–95 (2003)

    Google Scholar 

  28. F. Mormann, K. Lehnertz, P. David, C.E. Elger, Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Phys. D 144(3–4), 358–369 (2000)

    Article  Google Scholar 

  29. G.E. Nilsson, T. Tenland, P.L. Öberg, Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow. IEEE Trans. Biomed. Eng. 27, 597–604 (1980)

    Article  Google Scholar 

  30. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization—A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  31. T. Schreiber, A. Schmitz, Surrogate time series. Phys. D 142(3–4), 346–382 (2000)

    Article  MathSciNet  Google Scholar 

  32. L.W. Sheppard, A. Stefanovska, P.V.E. McClintock, Testing for time-localised coherence in bivariate data. Phys. Rev. E 85, 046,205 (2012)

    Google Scholar 

  33. J.M. Sherwood, D. Holmes, E. Kaliviotis, S. Balabani, Spatial distributions of red blood cells significantly alter local haemodynamics. PLOS ONE 9, e100,473 (2014)

    Google Scholar 

  34. Y. Shiogai, A. Stefanovska, P.V.E. McClintock, Nonlinear dynamics of cardiovascular ageing. Phys. Rep. 488, 51–110 (2010)

    Article  ADS  Google Scholar 

  35. T. Söderström, A. Stefanovska, M. Veber, H. Svenson, Involvement of sympathetic nerve activity in skin blood flow oscillations in humans. Am. J. Physiol.: Heart. Circ. Physiol. 284(5), H1638–H1646 (2003)

    Google Scholar 

  36. A. Stefanovska, Coupled oscillators: complex but not complicated cardiovascular and brain interactions. IEEE Eng. Med. Bio. Mag. 26(6), 25–29 (2007)

    Article  Google Scholar 

  37. A. Stefanovska, M. Bračič, Physics of the human cardiovascular system. Contemp. Phys. 40(1), 31–55 (1999)

    Article  ADS  Google Scholar 

  38. A. Stefanovska, M. Bračič, H.D. Kvernmo, Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique. IEEE Trans. Bio. Med. Eng. 46(10), 1230–1239 (1999)

    Article  Google Scholar 

  39. A. Stefanovska, M. Bračič Lotrič, S. Strle, H. Haken, The cardiovascular system as coupled oscillators? Physiol. Meas. 22(3), 535–550 (2001)

    Article  Google Scholar 

  40. T.E. Taylor, A. Borgstein, M.E. Molyneux, Acid-base status in paediatric Plasmodium falciparum malaria. QJM 86(2), 99–109 (1993)

    Google Scholar 

  41. D.A. Warrell, H.M. Gilles, Essential Malariology, 4th edn. (CRC Press, London, 2019)

    Google Scholar 

  42. D. Weatherall, L. Miller, D. Baruch, K. Marsh, O. Doumbo, C. Casals-Pascual, D. Roberts, Malaria and the red cell. Hematology 2002, 35–57 (2002)

    Article  Google Scholar 

  43. F. Wilcoxon, Individual comparisons by ranking methods. Biom. Bull. 1(6), 80–83 (1945)

    Article  Google Scholar 

  44. F. Yasuma, J. Hayano, Respiratory sinus arrhythmia—why does the heartbeat synchronize with respiratory rhythm? Chest 125(2), 683–690 (2004)

    Article  Google Scholar 

  45. T.W. Yeo, D.A. Lampah, E. Kenangalem, E. Tjitra, J.B. Weinberg, D.L. Granger, R.N. Price, N.M. Anstey, Decreased endothelial nitric oxide bioavailability, impaired microvascular function, and increased tissue oxygen consumption in children with falciparum malaria. J. Infect. Dis. 210(10), 1627–1632 (2014)

    Article  Google Scholar 

  46. E. Yeom, Y.J. Kang, S.J. Lee, Changes in velocity profile according to blood viscosity in a microchannel. Biomicrofluidics 8, 034,110 (2014)

    Google Scholar 

Download references

Acknowledgements

We are grateful to the participants who generously volunteered to be measured in this project. The work was supported by the Engineering and Physical Sciences Research Council (UK) Grant No. EP/M006298/1, the Tertiary Education Trust Fund (Nigeria), the Petroleum Technology Development Fund (Nigeria) under Grant No. PTDF/ED/OSS/PHD/1120/17, and the Joy Welch Educational Charitable Trust (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneta Stefanovska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdulhameed, Y.A., Habib, A.G., McClintock, P.V.E., Stefanovska, A. (2021). Phase Coherence Between Cardiovascular Oscillations in Malaria: The Basis for a Possible Diagnostic Test. In: Stefanovska, A., McClintock, P.V.E. (eds) Physics of Biological Oscillators. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-59805-1_26

Download citation

Publish with us

Policies and ethics