Skip to main content

Brain Morphological and Functional Networks: Implications for Neurodegeneration

  • Chapter
  • First Online:
Physics of Biological Oscillators

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

The highly complex architecture of brain networks has been characterised by modular structures at different levels of its organisation. Here, the focus is on modular properties of brain networks from in vivo neuroimaging of cortical morphology (e.g., thickness, surface area) and activity (function). In this chapter, I review findings on the mapping of these networks, including the time-varying functional networks, and describe some recent advances in mapping the macro- and micro-scales of brain organisation. The aim is to focus on cross-level and cross-modal organisational units of the brain, with reference to their modular topology. I describe recent approaches in network sciences to form bridges across different scales and properties. These approaches raise great expectations that cross-modal neuroimaging and analysis may provide a tool for understanding brain disorders at the system level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Alexander-Bloch, J.N. Giedd et al., Imaging structural co-variance between human brain regions. Nat. Rev. Neurosci 14, 322 (2013)

    Article  Google Scholar 

  2. J. Ashburner, K.J. Friston, Diffeomorphic registration using geodesic shooting and gauss-newton optimisation. NeuroImage 55, 954–967 (2011)

    Article  Google Scholar 

  3. D.S. Bassett et al., Hierarchical organization of human cortical networks in health and schizophrenia. J. Neurosci. 28, 9239–9248 (2008)

    Article  Google Scholar 

  4. D.S. Bassett, E.T. Bullmore, Small-world brain networks. Neuroscientist 12, 512–523 (2006)

    Article  Google Scholar 

  5. D.S. Bassett, E.T. Bullmore, Human brain networks in health and disease. Curr. Opin. Neurol. 22, 340–347 (2009)

    Article  Google Scholar 

  6. D.S. Bassett, A. Meyer-Lindenberg, D.R. Weinberger, R. Coppola, E. Bullmore, Cognitive fitness of cost-efficient brain functional networks. Proc. Natl. Acad. Sci. U.S.A. 106, 11747–11752 (2009)

    Article  ADS  Google Scholar 

  7. M.A. Bertolero, B.T. Yeo, M. Desposito, The modular and integrative functional architecture of the human brain. Proc. Nat. Acad. Sci.112, E6798–E6807 (2015)

    Google Scholar 

  8. R.F. Betzel et al., The modular organization of human anatomical brain networks: accounting for the cost of wiring. Netw. Neurosci. 1, 42–68 (2017)

    Article  Google Scholar 

  9. J. Boyke, J. Driemeyer, C. Gaser, C. Büchel, A. May, Training-induced brain structure changes in the elderly. J. Neurosci. 28, 7031–7035 (2008)

    Article  Google Scholar 

  10. M. Breakspear, S. Heitmann, A. Daffertshofer, Generative models of cortical oscillations: neurobiological implications of the Kuramoto model. Front. Hum. Neurosci. 4, (2010)

    Google Scholar 

  11. M. Breakspear, S. Heitmann, A. Daffertshofer, Generative models of cortical oscillations: neurobiological implications of the Kuramoto model. Front. Hum. Neurosci. 4, 1–14 (2010)

    Article  Google Scholar 

  12. R.L. Buckner et al., Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J. Neurosci. 29, 1860–1873 (2009)

    Article  Google Scholar 

  13. E.T. Bullmore, D.S. Bassett, Brain graphs: graphical models of the human brain connectome. Annu. Rev. Clin. psychol. 7, 113–140 (2011)

    Article  Google Scholar 

  14. E.T. Bullmore, O. Sporns, Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009)

    Article  Google Scholar 

  15. C.T. Butts, Revisiting the foundations of network analysis. science 325, 414–416 (2009)

    Google Scholar 

  16. V.D. Calhoun, R. Miller, G. Pearlson, T. Adalı, The chronnectome: time-varying connectivity networks as the next frontier in fmri data discovery. Neuron 84, 262–274 (2014)

    Article  Google Scholar 

  17. M. Catani, M.T. de Schotten, D. Slater, F. Dell’Acqua, Connectomic approaches before the connectome. Neuroimage 80, 2–13 (2013)

    Article  Google Scholar 

  18. M.S. Cetin et al., Multimodal classification of schizophrenia patients with meg and fmri data using static and dynamic connectivity measures. Fron. Neurosci. 10, 466 (2016)

    Google Scholar 

  19. C.-H. Chen et al., Genetic topography of brain morphology. Proc. Nat. Acad. Sci. 110, 17089–17094 (2013)

    Article  ADS  Google Scholar 

  20. Z.J. Chen, Y. He, P. Rosa-Neto, J. Germann, A.C. Evans, Revealing modular architecture of human brain structural networks by using cortical thickness from mri. Cereb. Cortex 18, 2374–2381 (2008)

    Article  Google Scholar 

  21. N.A. Crossley et al., Cognitive relevance of the community structure of the human brain functional coactivation network. Proc. Natl. Acad. Sci. 110, 11583–11588 (2013)

    Article  ADS  Google Scholar 

  22. O. David, D. Cosmelli, K.J. Friston, Evaluation of different measures of functional connectivity using a neural mass model. Neuroimage 21, 659–673 (2004)

    Article  Google Scholar 

  23. G. Deco, V.K. Jirsa, A.R. McIntosh, O. Sporns, R. Kötter, Key role of coupling, delay, and noise in resting brain fluctuations. Proc. Natl. Acad. Sci. U.S.A. 106, 10302–10307 (2009). http://www.pnas.org/content/106/25/10302.full.pdf+html

  24. G. Deco, V.K. Jirsa, A.R. McIntosh, Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci. 12, 43–56 (2011)

    Article  Google Scholar 

  25. R.S. Desikan et al., An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006)

    Article  Google Scholar 

  26. N.U.F. Dosenbach et al., Prediction of individual brain maturity using fmri. Science 329, 1358–1361 (2010)

    Article  ADS  Google Scholar 

  27. B. Draganski et al., Neuroplasticity: changes in grey matter induced by training. Nature 427, 311 (2004)

    Article  ADS  Google Scholar 

  28. A. Fornito, A. Zalesky, E.T. Bullmore, Network scaling effects in graph analytic studies of human resting-state fMRI data. J. Integr. Neurosci. 4, (2010)

    Google Scholar 

  29. S. Fortunato, D. Hric, Community detection in networks: a user guide. Phys. Rep. 659, 1–44 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  30. P. Fries, A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends cogn. sci. 9, 474–480 (2005)

    Article  Google Scholar 

  31. P. Fries, A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480 (2005)

    Article  Google Scholar 

  32. K. Friston, R.J. Dolan, Computational and dynamic models in neuroimaging. Neuroimage 52, 752–765 (2010)

    Article  Google Scholar 

  33. K. Friston, A. Mechelli, R. Turner, C.J. Price, Nonlinear responses in fMRI: the balloon model, Volterra kernels, and other hemodynamics. NeuroImage 12, 466–477 (2000)

    Article  Google Scholar 

  34. M.F. Glasser et al., A multi-modal parcellation of human cerebral cortex. Nature 536, 171 (2016)

    Article  ADS  Google Scholar 

  35. P. Hagmann et al., Mapping human whole-brain structural networks with diffusion mri. PLoS One 2, e597 (2007)

    Article  ADS  Google Scholar 

  36. P. Hagmann et al., Mapping the structural core of human cerebral cortex. PLoS Biol. 6, 15 (2008)

    Article  Google Scholar 

  37. A.M. Hermundstad, D.S. Bassett, K.S. Brown, E.M. Aminoff, D. Clewett, Structural foundations of resting-state and task-based functional connectivity in the human brain. Proc. Nat. Acad. Sci. 110, 6169–6174 (2013)

    Article  ADS  Google Scholar 

  38. C.J. Honey, R. Kötter, M. Breakspear, O. Sporns, Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl. Acad. Sci. U.S.A. 104, 10240–10245 (2007)

    Article  ADS  Google Scholar 

  39. P. Hövel, A. Viol, P. Loske, L. Merfort, V. Vuksanović, Synchronization in functional networks of the human brain. J. Nonlin. Sci. 1–24, (2018)

    Google Scholar 

  40. J.M. Huntenburg, P.-L. Bazin, D.S. Margulies, Large-scale gradients in human cortical organization. Trends in Cogn. Sci. 22, 21–31 (2018)

    Article  Google Scholar 

  41. R.M. Hutchison, T. Womelsdorf, E.A. Allen, P.A. Bandettini, V.D. Calhoun, Dynamic functional connectivity: promise, issues, and interpretations. NeuroImage 80, 360–378 (2013)

    Article  Google Scholar 

  42. V.K. Jirsa, A.R. McIntosh, Handbook of brain connectivity. in Handbook of Brain Connectivity, vol. 1, ed. by K.J. Viktor, A.R. McIntosh (Springer, Berlin, 2007)

    Google Scholar 

  43. S.D. Keilholz, The neural basis of time-varying resting-state functional connectivity. Brain Connectivity 4, 769–779 (2014)

    Article  Google Scholar 

  44. V. Kiviniemi et al., Functional segmentation of the brain cortex using high model order group pica. Hum. Brain Mapp. 30, 3865–3886 (2009)

    Article  Google Scholar 

  45. H. Laufs et al., Altered fmri connectivity dynamics in temporal lobe epilepsy might explain seizure semiology. Front. Neurol. 5, 175 (2014)

    Article  Google Scholar 

  46. K. Lehnertz, C. Geier, T. Rings, K. Stahn, Capturing time-varying brain dynamics. EPJ Nonlin. Biomed. Phys. 5, 2 (2017)

    Article  Google Scholar 

  47. A.R. Mayer et al., Static and dynamic intrinsic connectivity following mild traumatic brain injury. J. Neurotrauma 32, 1046–1055 (2015)

    Article  Google Scholar 

  48. D. Melo, A. Porto, J.M. Cheverud, G. Marroig, Modularity: genes, development, and evolution. Annu. Rev. Ecol. Evol. Syst. 47, 463–486 (2016)

    Article  Google Scholar 

  49. D. Meunier, S. Achard, A. Morcom, E. Bullmore, Age-related changes in modular organization of human brain functional networks. Neuroimage 44, 715–723 (2009)

    Article  Google Scholar 

  50. V.B. Mountcastle, The columnar organization of the neocortex. Brain J. Neurol.120, 701–722 (1997)

    Google Scholar 

  51. S. Mueller et al., Individual variability in functional connectivity architecture of the human brain. Neuron 77, 586–595 (2013)

    Article  Google Scholar 

  52. M.E. Newman, Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103, 8577–8582 (2006)

    Article  ADS  Google Scholar 

  53. D. Papo, M. Zanin, J.A. Pineda-Pardo, S. Boccaletti, J.M. Buldú, Functional brain networks: great expectations, hard times and the big leap forward. Philos. Trans. R. Soc. B Biol. Sci. 369, 20130525 (2014)

    Article  Google Scholar 

  54. H.-J. Park, K. Friston, Structural and functional brain networks: from connections to cognition. Science 342, 1238411 (2013)

    Article  Google Scholar 

  55. J.D. Power et al., Functional network organization of the human brain. Neuron 72, 665–78 (2011)

    Article  Google Scholar 

  56. M.E. Raichle, D.A. Gusnard, Appraising the brain’s energy budget. Proc. Natl. Acad. Sci. 99, 10237–10239 (2002)

    Article  ADS  Google Scholar 

  57. C. Reveley et al., Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion mr tractography. Proc. Nat. Acad. Sci. 112, E2820–E2828 (2015)

    Article  Google Scholar 

  58. Y.-A. Rho, R.A. McIntosh, V.K. Jirsa, Synchrony of two brain regions predicts the blood oxygen level dependent activity of a third. Brain connectivity 1, 73–80 (2011)

    Article  Google Scholar 

  59. P. Ritter, M. Schirner, A.R. McIntosh, V.K. Jirsa, The virtual brain integrates computational modeling and multimodal neuroimaging. Brain Connectivity 3, 121–145 (2013)

    Article  Google Scholar 

  60. M. Rubinov, O. Sporns, Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52, 1059–1069 (2010)

    Article  Google Scholar 

  61. G. Sanabria-Diaz et al., Surface area and cortical thickness descriptors reveal different attributes of the structural human brain networks. Neuroimage 50, 1497–1510 (2010)

    Article  Google Scholar 

  62. J. Seidlitz et al., Morphometric similarity networks detect microscale cortical organization and predict inter-individual cognitive variation. Neuron 97, 231–247 (2018)

    Article  Google Scholar 

  63. O. Sporns, Network analysis, complexity, and brain function. Complexity 8, 56–60 (2002)

    Article  MathSciNet  Google Scholar 

  64. O. Sporns, Structure and function of complex brain networks. Dialogues clin. Neurosci. 15, 247 (2013)

    Article  Google Scholar 

  65. O. Sporns, R.F. Betzel, Modular brain networks. Annu. Rev. Psychol. 67, 613–640 (2016)

    Article  Google Scholar 

  66. C.J. Stam, Modern network science of neurological disorders. Nat. Rev. Neurosci. 15, 683–695 (2014)

    Article  Google Scholar 

  67. H. Tost, E. Bilek, A. Meyer-Lindenberg, Brain connectivity in psychiatric imaging genetics. Neuroimage 62, 2250–2260 (2012)

    Article  Google Scholar 

  68. N.B. Turk-Browne, Functional interactions as big data in the human brain. Science 342, 580–584 (2013)

    Article  ADS  Google Scholar 

  69. B. Tzourio-Mazoyer et al., Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15, 273–289 (2002)

    Article  Google Scholar 

  70. S.L. Valk et al., Structural plasticity of the social brain: differential change after socio-affective and cognitive mental training. Sci. Adv. 3, e1700489 (2017)

    Article  ADS  Google Scholar 

  71. M.P. van den Heuvel, C.J. Stam, M. Boersma, H.H. Pol, Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. Neuroimage 43, 528–539 (2008)

    Article  Google Scholar 

  72. M.P. van den Heuvel, L.H. Scholtens, L.F. Barrett, C.C. Hilgetag, M.A. de Reus, Bridging cytoarchitectonics and connectomics in human cerebral cortex. J. Neurosci. 35, 13943–13948 (2015)

    Article  Google Scholar 

  73. F. Váša et al., Adolescent tuning of association cortex in human structural brain networks. Cereb. Cortex 28, 281–294 (2017)

    Article  Google Scholar 

  74. V. Vuksanović, Cortical thickness and functional networks modules by cortical lobes. Neuroscience423, 172–176 (2019)

    Google Scholar 

  75. V. Vuksanović, P. Hövel, Dynamic changes in network synchrony reveal resting-state functional networks. Chaos25, 023116 (2015)

    Google Scholar 

  76. V. Vuksanović, P. Hövel, Role of structural inhomogeneities in the resting-state brain dynamics. submitted

    Google Scholar 

  77. V. Vuksanović, R. Staff, T. Ahearn, A. Murray, W. Claude, Cortical thickness and surface area networks in healthy aging, alzheimer’s disease and behavioral variant fronto-temporal dementia. Int. J. Neur. Sys. (2019), (in press)

    Google Scholar 

  78. V. Vuksanović, P. Hövel, Functional connectivity of distant cortical regions: role of remote synchronization and symmetry in interactions. NeuroImage 97, 1–8 (2014)

    Article  Google Scholar 

  79. V. Vuksanović, R.T. Staff, T. Ahearn, A.D. Murray, C.M. Wischik, Cortical thickness and surface area networks in healthy aging, alzheimers disease and behavioral variant fronto-temporal dementia. Int. J. Neur. Sys. 29, 1850055 (2019)

    Article  Google Scholar 

  80. Y. Wei, L.H. Scholtens, E. Turk, M.P. van den Heuvel, Multiscale examination of cytoarchitectonic similarity and human brain connectivity. Netw. Neurosci. 3, 124–137 (2018)

    Article  Google Scholar 

  81. M. Yamashita, M. Kawato, H. Imamizu, Predicting learning plateau of working memory from whole-brain intrinsic network connectivity patterns. Sci. Rep. 5, 7622 (2015)

    Article  ADS  Google Scholar 

  82. Q. Yu et al., Assessing dynamic brain graphs of time-varying connectivity in fmri data: application to healthy controls and patients with schizophrenia. Neuroimage 107, 345–355 (2015)

    Article  Google Scholar 

  83. A. Zalesky et al., Whole-brain anatomical networks: does the choice of nodes matter? NeuroImage 50, 970–983 (2010)

    Article  Google Scholar 

  84. A. Zalesky, M. Breakspear, Towards a statistical test for functional connectivity dynamics. Neuroimage 114, 466–470 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vesna Vuksanović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vuksanović, V. (2021). Brain Morphological and Functional Networks: Implications for Neurodegeneration. In: Stefanovska, A., McClintock, P.V.E. (eds) Physics of Biological Oscillators. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-59805-1_21

Download citation

Publish with us

Policies and ethics