Skip to main content

Coupling Functions in Neuroscience

  • Chapter
  • First Online:
Physics of Biological Oscillators

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Neural interactions play one of the central roles in the brain mediating various processes and functions. They are particularly important for the brain as a complex system that has many different functions from the same structural connectivity. When studying such interactions coupling functions are very suitable, as inherently they can reveal the underlaying functional mechanism. This chapter overviews some recent and widely used aspects of coupling functions for studying neural interactions. Coupling functions are discussed in connection to two different levels of brain interactions—that of neuron interactions and brainwave cross-frequency interactions. Aspects relevant to this from both, theory and methods, are presented. Although the discussion is based on neuroscience, there are strong implications from, and to, other fields as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.A. Acebrón, L.L. Bonilla, C.J. Pérez Vicente, F. Ritort, R. Spigler, The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005)

    Google Scholar 

  2. S. Achuthan, C.C. Canavier, Phase-resetting curves determine synchronization, phase locking, and clustering in networks of neural oscillators. J. Neurosci. 29(16), 5218–5233 (2009)

    Article  Google Scholar 

  3. F.A. Azevedo, L.R. Carvalho, L.T. Grinberg, J.M. Farfel, R.E. Ferretti, R.E. Leite, W.J. Filho, R. Lent, S. Herculano-Houzel, Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comparat. Neurol. 513(5), 532–541 (2009)

    Article  Google Scholar 

  4. C. Bick, M. Goodfellow, C.R. Laing, E.A. Martens, Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a review. J. Mathemat. Neurosci. 10, 9 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Breakspear, S. Heitmann, A. Daffertshofer, Generative models of cortical oscillations: neurobiological implications of the Kuramoto model. Front. Human Neurosci. 4, 190 (2010)

    Article  Google Scholar 

  6. E.N. Brown, J. Moehlis, P. Holmes, On the phase reduction and response dynamics of neural oscillator populations. Neur. Comp. 16(4), 673–715 (2004)

    Article  MATH  Google Scholar 

  7. G. Buzsáki, A. Draguhn, Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004)

    Article  ADS  Google Scholar 

  8. R.T. Canolty, E. Edwards, S.S. Dalal, M. Soltani, S.S. Nagarajan, H.E. Kirsch, M.S. Berger, N.M. Barbaro, R.T. Knight, High gamma power is phase-locked to theta oscillations in human neocortex. Science 313(5793), 1626–1628 (2006)

    Article  ADS  Google Scholar 

  9. R.T. Canolty, R.T. Knight, The functional role of cross-frequency coupling. Trends Cognit. Sci. 14(11), 506–515 (2010)

    Article  Google Scholar 

  10. B. Ermentrout, Type I membranes, phase resetting curves, and synchrony. Neural Comput. 8(5), 979–1001 (1996)

    Article  Google Scholar 

  11. B. Ermentrout, D. Saunders, Phase resetting and coupling of noisy neural oscillators. J. Comput. Neurosci. 20(2), 179–190 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. G.B. Ermentrout, B. Beverlin, T. Netoff, Phase response curves to measure ion channel effects on neurons, in Phase Response Curves in Neuroscience (Springer, 2012), pp. 207–236

    Google Scholar 

  13. A.S. Etémé, C.B. Tabi, J.F.B. Ateba, H.P.F. Ekobena, A. Mohamadou, T.C. Kofane, Neuronal firing and DNA dynamics in a neural network. J. Phys. Comms. 2(12), 125004 (2018)

    Article  Google Scholar 

  14. K.J. Friston, Functional and effective connectivity: a review. Brain. Connect. 1(1), 13–36 (2011)

    Article  MathSciNet  Google Scholar 

  15. K.J. Friston, L. Harrison, W. Penny, Dynamic causal modelling. Neuroimage 19(4), 1273–1302 (2003)

    Article  Google Scholar 

  16. R.F. Galán, G.B. Ermentrout, N.N. Urban, Efficient estimation of phase-resetting curves in real neurons and its significance for neural-network modeling. Phys. Rev. Lett. 94, 158101 (2005). https://doi.org/10.1103/PhysRevLett.94.158101

    Article  ADS  Google Scholar 

  17. W. Gerstner, W.M. Kistler, Spiking Neuron Models: Single Neurons, Populations, Plasticity (Cambridge University Press, 2002)

    Google Scholar 

  18. W. Gerstner, R. Naud, How good are neuron models? Science 326(5951), 379–380 (2009)

    Article  Google Scholar 

  19. Z. Hagos, T. Stankovski, J. Newman, T. Pereira, P.V.E. McClintock, A. Stefanovska, Synchronization transitions caused by time-varying coupling functions. Philoso. Trans. R. Soc. A 377(2160), 20190275 (2019)

    Google Scholar 

  20. H. Haken, Synergetics, An Introduction (Springer, Berlin, 1983)

    Google Scholar 

  21. R. Haseloff, I. Blasig, H.C. Bauer, H. Bauer, In search of the astrocytic factor (s) modulating blood-brain barrier functions in brain capillary endothelial cells in vitro. Cell. Molecul. Neurobiol. 25(1), 25–39 (2005)

    Article  Google Scholar 

  22. M.H. Hassoun et al., Fundamentals of Artificial Neural Networks (MIT Press, 1995)

    Google Scholar 

  23. Y. He, A. Evans, Graph theoretical modeling of brain connectivity. Current Opin. Neurol. 23(4), 341–350 (2010)

    Article  Google Scholar 

  24. A.L. Hodgkin, A.F. Huxley, Currents carried by sodium and potassium ions through the membrane of the giant axon of loligo. J. Physiol. 116(4), 449–472 (1952)

    Article  Google Scholar 

  25. B. Horwitz, The elusive concept of brain connectivity. Neuroimage 19(2), 466–470 (2003)

    Article  Google Scholar 

  26. D. Iatsenko, A. Bernjak, T. Stankovski, Y. Shiogai, P.J. Owen-Lynch, P.B.M. Clarkson, P.V.E. McClintock, A. Stefanovska, Evolution of cardio-respiratory interactions with age. Phil. Trans. R. Soc. Lond. A 371(1997), 20110622 (2013)

    MATH  ADS  Google Scholar 

  27. E.M. Izhikevich, Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  28. A. Jafarian, P. Zeidman, V. Litvak, K. Friston, Structure learning in coupled dynamical systems and dynamic causal modelling. Phil. Trans. R. Soc. A 377, 20190048 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  29. O. Jensen, L.L. Colgin, Cross-frequency coupling between neuronal oscillations. Trends Cognit. Sci. 11(7), 267–269 (2007)

    Article  Google Scholar 

  30. V. Jirsa, V. Müller, Cross-frequency coupling in real and virtual brain networks. Front. Comput. Neurosci. 7, 78 (2013)

    Article  Google Scholar 

  31. V. Jurcak, D. Tsuzuki, I. Dan, 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage 34(4), 1600–1611 (2007)

    Article  Google Scholar 

  32. I.Z. Kiss, C.G. Rusin, H. Kori, J.L. Hudson, Engineering complex dynamical structures: sequential patterns and desynchronization. Science 316(5833), 1886–1889 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  33. I.Z. Kiss, Y. Zhai, J.L. Hudson, Predicting mutual entrainment of oscillators with experiment-based phase models. Phys. Rev. Lett. 94, 248301 (2005)

    Article  ADS  Google Scholar 

  34. B. Kralemann, L. Cimponeriu, M. Rosenblum, A. Pikovsky, R. Mrowka, Phase dynamics of coupled oscillators reconstructed from data. Phys. Rev. E 77(6, Part 2), 066205 (2008)

    Google Scholar 

  35. B. Kralemann, M. Frühwirth, A. Pikovsky, M. Rosenblum, T. Kenner, J. Schaefer, M. Moser, In vivo cardiac phase response curve elucidates human respiratory heart rate variability. Nat. Commun. 4, 2418 (2013)

    Article  ADS  Google Scholar 

  36. Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, in Lecture Notes in Physics, vol. 39, ed. by H. Araki (Springer, New York, 1975), pp. 420–422

    Google Scholar 

  37. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, 1984)

    Book  MATH  Google Scholar 

  38. G. Lancaster, D. Iatsenko, A. Pidde, V. Ticcinelli, A. Stefanovska, Surrogate data for hypothesis testing of physical systems. Phys. Rep. (2018)

    Google Scholar 

  39. Z. Levnajić, A. Pikovsky, Network reconstruction from random phase resetting. Phys. Rev. Lett. 107, 034101 (2011). https://doi.org/10.1103/PhysRevLett.107.034101

    Article  ADS  Google Scholar 

  40. D. Lukarski, M. Ginovska, H. Spasevska, T. Stankovski, Time window determination for inference of time-varying dynamics: application to cardiorespiratory interaction. Front. Physiol. 11 (2020)

    Google Scholar 

  41. W. Moon, J.S. Wettlaufer, Coupling functions in climate. Phil. Trans. R. Soc. A 377(2160), 20190006 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  42. C. Morris, H. Lecar, Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35(1), 193–213 (1981)

    Article  ADS  Google Scholar 

  43. B. Musizza, A. Stefanovska, P.V.E. McClintock, M. Paluš, J. Petrovčič, S. Ribarič, F.F. Bajrović, Interactions between cardiac, respiratory, and EEG-\(\delta \) oscillations in rats during anæsthesia. J. Physiol. (London) 580(1), 315–326 (2007)

    Google Scholar 

  44. G. Nadzinski, M. Dobrevski, C. Anderson, P.V.E. McClintock, A. Stefanovska, M. Stankovski, T. Stankovski, Experimental realization of the coupling function secure communications protocol and analysis of its noise robustness. IEEE Trans. Info. Forens. Secur. 13(10), 2591–2601 (2018)

    Article  Google Scholar 

  45. H. Nakao, Phase reduction approach to synchronisation of nonlinear oscillators. Contem. Phys. 57(2), 188–214 (2016)

    Article  ADS  Google Scholar 

  46. E. Niedermeyer, F.L. da Silva, Electroencephalography: Basic Principles, Clinical Applications, and Related Fields (Lippincott Williams & Wilkins, 2005)

    Google Scholar 

  47. T. Onojima, T. Goto, H. Mizuhara, T. Aoyagi, A dynamical systems approach for estimating phase interactions between rhythms of different frequencies from experimental data. PLoS Comput. Biol. 14(1), e1005928 (2018)

    Google Scholar 

  48. S.A. Oprisan, A.A. Prinz, C.C. Canavier, Phase resetting and phase locking in hybrid circuits of one model and one biological neuron. Biophys. J. 87(4), 2283–2298 (2004)

    Article  ADS  Google Scholar 

  49. P. Orio, M. Gatica, R. Herzog, J.P. Maidana, S. Castro, K. Xu, Chaos versus noise as drivers of multistability in neural networks. Chaos 28(10), 106321 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  50. E. Ott, T.M. Antonsen, Low dimensional behavior of large systems of globally coupled oscillators. Chaos 18(3), 037113 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  51. H.J. Park, K. Friston, Structural and functional brain networks: from connections to cognition. Science 342(6158), 1238411 (2013)

    Article  Google Scholar 

  52. S. Petkoski, V.K. Jirsa, Transmission time delays organize the brain network synchronization. Philoso. Trans. R. Soc. A 377(2153), 20180132 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  53. B. Pietras, A. Daffertshofer, Network dynamics of coupled oscillators and phase reduction techniques. Phys. Rep. 819, 1–105 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  54. A. Pikovsky, Reconstruction of a random phase dynamics network from observations. Phys. Lett. A 382(4), 147–152 (2018)

    Article  MATH  ADS  Google Scholar 

  55. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization–A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2001)

    Book  MATH  Google Scholar 

  56. S. Ranganathan, V. Spaiser, R.P. Mann, D.J.T. Sumpter, Bayesian dynamical systems modelling in the social sciences. PLoS ONE 9(1), e86468 (2014)

    Google Scholar 

  57. T. Rings, K. Lehnertz, Distinguishing between direct and indirect directional couplings in large oscillator networks: partial or non-partial phase analyses? Chaos 26(9), 093106 (2016)

    Google Scholar 

  58. C. Rocsoreanu, A. Georgescu, N. Giurgiteanu, The FitzHugh-Nagumo Model: Bifurcation and Dynamics, vol. 10 (Springer Science & Business Media, 2012)

    Google Scholar 

  59. M. Rosenblum, M. Frühwirth, M. Moser, A. Pikovsky, Dynamical disentanglement in an analysis of oscillatory systems: an application to respiratory sinus arrhythmia. Phil. Trans. R. Soc. A 377(2160), 20190045 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  60. M. Rubinov, O. Sporns, Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)

    Article  Google Scholar 

  61. A. Sanz-Garcia, T. Rings, K. Lehnertz, Impact of type of intracranial EEG sensors on link strengths of evolving functional brain networks. Physiol. Meas. 39(7), 074003 (2018)

    Article  Google Scholar 

  62. H. Schmidt, G. Petkov, M.P. Richardson, J.R. Terry, Dynamics on networks: the role of local dynamics and global networks on the emergence of hypersynchronous neural activity. PLoS Comput. Biol. 10(11) (2014)

    Google Scholar 

  63. T. Schreiber, A. Schmitz, Surrogate time series. Phys. D 142(3–4), 346–382 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  64. V.N. Smelyanskiy, D.G. Luchinsky, A. Stefanovska, P.V.E. McClintock, Inference of a nonlinear stochastic model of the cardiorespiratory interaction. Phys. Rev. Lett. 94(9), 098101 (2005)

    Article  ADS  Google Scholar 

  65. T. Stankovski, Time-varying coupling functions: dynamical inference and cause of synchronization transitions. Phys. Rev. E 95(2), 022206 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  66. T. Stankovski, A. Duggento, P.V.E. McClintock, A. Stefanovska, Inference of time-evolving coupled dynamical systems in the presence of noise. Phys. Rev. Lett. 109, 024101 (2012)

    Article  ADS  Google Scholar 

  67. T. Stankovski, A. Duggento, P.V.E. McClintock, A. Stefanovska, A tutorial on time-evolving dynamical Bayesian inference. Eur. Phys. J. Special Topics 223(13), 2685–2703 (2014)

    Article  ADS  Google Scholar 

  68. T. Stankovski, P.V.E. McClintock, A. Stefanovska, Coupling functions enable secure communications. Phys. Rev. X 4, 011026 (2014)

    Google Scholar 

  69. T. Stankovski, T. Pereira, P.V.E. McClintock, A. Stefanovska, Coupling functions: universal insights into dynamical interaction mechanisms. Rev. Mod. Phys. 89(33), 045001 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  70. T. Stankovski, T. Pereira, P.V.E. McClintock, A. Stefanovska, Coupling functions: dynamical interaction mechanisms in the physical, biological and social sciences. Phil. Trans. R. Soc. A 377, 20190039 (2019)

    Article  ADS  Google Scholar 

  71. T. Stankovski, S. Petkoski, J. Raeder, A.F. Smith, P.V.E. McClintock, A. Stefanovska, Alterations in the coupling functions between cortical and cardio-respiratory oscillations due to anaesthesia with propofol and sevoflurane. Phil. Trans. R. Soc. A 374(2067), 20150186 (2016)

    Article  ADS  Google Scholar 

  72. T. Stankovski, V. Ticcinelli, P.V.E. McClintock, A. Stefanovska, Coupling functions in networks of oscillators. New J. Phys. 17(3), 035002 (2015)

    Article  MATH  ADS  Google Scholar 

  73. T. Stankovski, V. Ticcinelli, P.V.E. McClintock, A. Stefanovska, Neural cross-frequency coupling functions. Front. Syst. Neurosci. 11(33), https://doi.org/10.3389/fnsys.2017.00033 (2017)

  74. A. Stefanovska, Coupled oscillators: complex but not complicated cardiovascular and brain interactions. IEEE Eng. Med. Bio. Magazine 26(6), 25–29 (2007)

    Article  Google Scholar 

  75. S. Strogatz, Nonlinear Dynamics and Chaos (Westview Press, Boulder, 2001)

    Google Scholar 

  76. H. Su, C. Huo, B. Wang, W. Li, G. Xu, Q. Liu, Z. Li, Alterations in the coupling functions between cerebral oxyhaemoglobin and arterial blood pressure signals in post-stroke subjects. PloS One 13(4), e0195936 (2018)

    Article  Google Scholar 

  77. K. Suzuki, T. Aoyagi, K. Kitano, Bayesian estimation of phase dynamics based on partially sampled spikes generated by realistic model neurons. Front. Comput. Neurosci. 11, 116 (2018)

    Article  Google Scholar 

  78. C.N. Takembo, A. Mvogo, H.P.E. Fouda, T.C. Kofané, Effect of electromagnetic radiation on the dynamics of spatiotemporal patterns in memristor-based neuronal network. Nonlin. Dyn. 1–12 (2018)

    Google Scholar 

  79. V. Ticcinelli, T. Stankovski, D. Iatsenko, A. Bernjak, A. Bradbury, A. Gallagher, P.B.M. Clarkson, P.V.E. McClintock, A. Stefanovska, Coherence and coupling functions reveal microvascular impairment in treated hypertension. Front. Physiol. 8, 749 (2017)

    Article  Google Scholar 

  80. I.T. Tokuda, S. Jain, I.Z. Kiss, J.L. Hudson, Inferring phase equations from multivariate time series. Phys. Rev. Lett. 99, 064101 (2007)

    Article  ADS  Google Scholar 

  81. G. Uribarri, G.B. Mindlin, Resonant features in a forced population of excitatory neurons. arXiv:1902.06008 (2019)

  82. B. Voytek, R.T. Canolty, A. Shestyuk, N.E. Crone, J. Parvizi, R.T. Knight, Shifts in gamma phase–amplitude coupling frequency from theta to alpha over posterior cortex during visual tasks. Front. Hum. Neurosci. 4, Art. No. 191 (2010)

    Google Scholar 

  83. S. Watanabe, S.H. Strogatz, Integrability of a globally coupled oscillator array. Phys. Rev. Lett. 70(16), 2391 (1993)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  84. A.T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16(1), 15 (1967)

    Article  Google Scholar 

  85. B. Yegnanarayana, Artificial neural networks (PHI Learning Pvt, Ltd, 2009)

    Google Scholar 

  86. A. Yeldesbay, G.R. Fink, S. Daun, Reconstruction of effective connectivity in the case of asymmetric phase distributions. J. Neurosci. Methods 317, 94–107 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomislav Stankovski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stankovski, T. (2021). Coupling Functions in Neuroscience. In: Stefanovska, A., McClintock, P.V.E. (eds) Physics of Biological Oscillators. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-59805-1_11

Download citation

Publish with us

Policies and ethics