Skip to main content

Characterization of Shear Band Nucleation and Propagation in Bulk Metallic Glasses

  • Conference paper
  • First Online:
Mechanics of Biological Systems and Materials & Micro-and Nanomechanics & Research Applications

Abstract

A novel experimental configuration was devised to monitor the deformation mechanisms in metallic glasses at the microscopic scale. The experiment is comprised of a wedge like cylindrical indenter while monitoring the evolution of the associated plastic zone, and crack initiation and propagation by a microscopic digital image correlation system. A new algorithm is developed to measure the localized shear strain with the shear band, which found to be in excess of several thousand percent. The deformation within the band and outside the band were resolved and showed very intricate cooperative interactions. The measurements and in-situ observations shed lights on the micromechanisms of deformation in BMG alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bruck, H.A., Christman, T., Rosakis, A.J., Johnson, W.L.: Quasi-static constitutive behavior of Zr41.25Ti13.75Ni10 Cu12.5Be22.5 bulk amorphous alloys. Scr. Metall. Mater. 30, 429–434 (1994)

    Article  Google Scholar 

  2. Wright, W.J., Schwarz, R.B., Nix, W.D.: Localized heating during serrated plastic flow in bulk metallic glasses. Mater. Sci. Eng. A. 319-321, 229–232 (2001)

    Article  Google Scholar 

  3. Donovan, P.E.: Plastic flow and fracture of Pd40Ni40P20 metallic glass under an indentor. J. Mater. Sci. 24, 523–535 (1989a)

    Article  Google Scholar 

  4. Pampillo, C.A.: Flow and fracture in amorphous alloys. J. Mater. Sci. 10, 1194–1227 (1975)

    Article  Google Scholar 

  5. Patnaik, M.N.M., Narasimhan, R., Ramamurty, U.: Spherical indentation response of metallic glasses. Acta Mater. 52, 3335–3345 (2004)

    Article  Google Scholar 

  6. Antoniou, A., Bastawros, A., Biner, B.: Experimental observations of deformation behavior of bulk metallic glasses during wedge-like cylindrical indentation. J. Mater. Res. 22, 514–524 (2007)

    Article  Google Scholar 

  7. Lund, A.C., Schuh, C.A.: Yield surface of a simulated metallic glass. Acta Mater. 51, 5399–5411 (2003)

    Article  Google Scholar 

  8. Kramer, M.J., Sordelet, D.J., Bastawros, A.F., Tan, X., Biner, S.B.: Absence of crystallization during cylindrical indentation of a Zr-based metallic glass. J. Non-Cryst. Solids. 351, 2159–2165 (2005)

    Article  Google Scholar 

  9. Conner, R.D., Johnson, W.L., Paton, N.E., Nix, W.D.: Shear bands and cracking of metallic glass plates in bending. J. Appl. Phys. 94, 904–911 (2003)

    Article  Google Scholar 

  10. Antoniou, A., Bastawros, A.F., Lo, C.C.H., Biner, S.B.: Deformation behavior of a zirconium based metallic glass during cylindrical indentation: In situ observations. Mater. Sci. Eng. A. 394, 96–102 (2005)

    Article  Google Scholar 

  11. Antoniou, A., Biner, S.B., Bastawros, A.F.: Experimental observation of cylindrical indentation of a metallic glass. Mater. Res. Soc. Symp. Proc. 903, 0903-Z12-0 (2005)

    Google Scholar 

  12. Donovan, P.E.: Yield criterion for Pd40Ni40P20 metallic glass. Acta Metall. 37, 445–456 (1989b)

    Article  Google Scholar 

  13. Vaidyanathan, R., Dao, M., Ravichandran, G., Suresh, S.: Study of mechanical deformation in bulk metallic glass through instrumented indentation. Acta Mater. 49, 3781–3789 (2001)

    Article  Google Scholar 

  14. Argon, A.S.: Plastic deformation in metallic glasses. Acta Metall. 27, 47–58 (1979)

    Article  Google Scholar 

  15. Shi, Y., Falk, M.L.: Structural transformation and localization during simulated nanoindentation of a noncrystalline metal film. Appl. Phys. Lett. 86(1), 011914-1-011914-3 (2005)

    Article  Google Scholar 

  16. Shi, Y., Falk, M.L.: Does metallic glass have a backbone? The role of percolating short-range order in strength and failure. Scr. Mater. 54, 381–386 (2006)

    Article  Google Scholar 

  17. Spaepen, F.: Microscopic mechanisms for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407–415 (1977)

    Article  Google Scholar 

  18. Steif, P.S., Spaepen, F., Hutchinson, J.W.: Strain localization in amorphous metals. Acta Metall. 30, 447–455 (1982)

    Article  Google Scholar 

  19. Huang, R., Suo, Z., Prevost, J.H., Nix, W.D.: Inhomogeneous deformation in metallic glasses. J. Mech. Phys. Solids. 50, 1011–1027 (2002)

    Article  Google Scholar 

  20. Li, J., Spaepen, F., Hufnagel, T.C.: Nanometre-scale defects in shear bands in a metallic glass. Philos. Mag. A. 82, 2623–2630 (2002)

    Article  Google Scholar 

  21. Bruck, H., McNeill, S., Sutton, M., Peters, W.I.: Digital image correlation using Newton-Raphson method of partial differential correction. Exp. Mech. 29, 261–267 (1989)

    Article  Google Scholar 

  22. Wang, Y., Cuitiño, A.M.: Full-field measurements of heterogeneous deformation patterns on polymeric foams using digital image correlation. Int. J. Solids Struct. 39, 3777–3796 (2002)

    Article  Google Scholar 

  23. Bastawros, A., McManuis, R.: Case study: use of digital image analysis software to measure non-uniform deformation in cellular aluminum alloys. Exp. Tech. 22(2), 35–37 (1998)

    Article  Google Scholar 

  24. Wang, H., Lai, W., Antoniou, A., Bastawros, A.: Application of digital image correlation for multiscale biomechanics. In: Handbook of imaging in biological mechanics. Corey Neu and Guy Genin EDs, pp. 141–150. CRC Press, Boca Raton, FL (2014)

    Google Scholar 

  25. Peters, W.H., Ranson, W.F.: Digital imaging techniques in experimental stress analysis. Opt. Eng. 21, 427–431 (1982)

    Google Scholar 

  26. Chu, T.C., Ranson, W.F., Sutton, M.A., Peters, W.H.: Applications of digital image correlation techniques in experimental mechanics. Exp. Mech. 25, 232–244 (1985)

    Article  Google Scholar 

  27. Antoniou, A., Onck, P., Bastawros, A.F.: Experimental analysis of compressive notch strengthening in closed-cell aluminum alloy foam. Acta Mater. 52, 2377–2386 (2004)

    Article  Google Scholar 

  28. Bastawros, A., Bart-Smith, H., Evans, A.: Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam. J. Mech. Phys. Solids. 48, 301–322 (2000)

    Article  Google Scholar 

  29. Bastawros, A., Evans, A.G.: Deformation heterogeneity in cellular al alloys. Adv. Eng. Mater. 2(4), 210–214 (2000)

    Article  Google Scholar 

  30. Kang J., Schmidt T., Jain M., Wilkinson D.: Microscopic material characterization using SEM topography images correlation. SEM Annual Conference and Exposition on Experimental and Applied Mechanics 2006, Jun 4–7 2006, pp. 1389–1395

    Google Scholar 

  31. Tong, W.: Detection of plastic deformation patterns in a binary aluminum alloy. Exp. Mech. 37, 452–459 (1997)

    Article  Google Scholar 

  32. Antoniou, A., Bastawros, A.: Deformation characteristics of tin-based solder joints. J. Mat. Res. 18(10), 2304–2309 (2003)

    Article  Google Scholar 

  33. Sutton, M.A., Wolters, W.J., Peters, W.H., Ranson, W.F., McNeill, S.R.: Determination of displacements using an improved digital correlation method. Image Vis. Comput. 1, 133–139 (1983)

    Article  Google Scholar 

  34. Cheng, P., Sutton, M.A., Schreier, H.W., McNeill, S.R.: Full-field speckle pattern image correlation with B-spline deformation function. Exp. Mech. 42, 344–352 (2002)

    Article  Google Scholar 

  35. Schreier, H.W., Braasch, J.R., Sutton, M.A.: Systematic errors in digital image correlation caused by intensity interpolation. Opt. Eng. 39, 2915–2921 (2000)

    Article  Google Scholar 

  36. Bay, B., Smith, T., Fyhrie, D., Saad, M.: Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp. Mech. 39, 217–226 (1999)

    Article  Google Scholar 

  37. Rethore, J., Hild, F., Roux, S.: Shear-band capturing using a multiscale extended digital image correlation technique. Comput. Methods Appl. Mech. Eng. 196, 5016–5030 (2007)

    Article  Google Scholar 

  38. Johnson, K.L.: Correlation of indentation experiments. J. Mech. Phys. Solids. 18, 115–126 (1970)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by US National Science Foundation (NSF) with an award number CMS-0134111 and DMR-1807545.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf Bastawros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H., Bastawros, A. (2021). Characterization of Shear Band Nucleation and Propagation in Bulk Metallic Glasses. In: Notbohm, J., Karanjgaokar, N., Franck, C., DelRio, F.W. (eds) Mechanics of Biological Systems and Materials & Micro-and Nanomechanics & Research Applications. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-59765-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59765-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59764-1

  • Online ISBN: 978-3-030-59765-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics