Skip to main content

Abstract

Nitric Oxide (NO) is a diffusible molecule that is involved in many key signaling processes within the brain, notably the regulation of cerebral blood flow and pressure. NO is produced within neurons, endothelial cells, and red blood cells, but is only activated within the endothelial cells by the shear stress at the blood-endothelium interface. Because of the NO significance to brain functionality, various mathematical models of NO behavior have been proposed in literature. However, most of these models do not thoroughly incorporate the NO production in the endothelium through mechanotransduction. In a recent paper, we proposed a mathematical model to describe the steady-state behavior of NO in the brain that accounts for the shear-induced endothelial NO production and the Poiseuille-like flow of blood. In this paper we expand upon this model by introducing a deformable vascular wall and pulsatile blood flow. The arterial wall is modeled as a Maxwell linear viscoelastic material. Numerical simulations will show the mechanical effects on the spatio-temporal distribution of NO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Attwell, D., Buchan, A., Charpak, S., Lauritzen, M., MacVicar, B.A., Newman, E.A.: Glial and neuronal control of brain blood flow. Nature. 468, 232–243 (2010). https://doi.org/10.1038/nature09613

    Article  Google Scholar 

  2. Barbosa, R.M., Lourenco, C.F., Santos, R.M., Pomerleau, F., Huettl, P., Gehardt, G.A., Laranjinha, J.: In vivo real-time measurement of nitric oxide in anesthetized rat brain. Methods Enzymol. 441, 351–367 (2008). https://doi.org/10.1016/S0076-6879(08)01220-2

    Article  Google Scholar 

  3. Buerk, D.G., Ances, B.M., Greenberg, J.H., Detre, J.A.: Temporal dynamics of brain tissue nitric oxide during functional forepaw stimulation in rats. Neuroimage. 18, 1–9 (2003)

    Article  Google Scholar 

  4. Contestabile, A., Monti, B., Polazzi, E.: Neuronal-glial interactions define the role of nitric oxide in neural functional processes. Curr. Neuropharmacol. 10(4), 303–310 (2012). https://doi.org/10.2174/157015912804143522

    Article  Google Scholar 

  5. Forstermann, U., Sessa, W.C.: Nitric oxide synthases: regulation and function. Eur. Heart J. 33, 829–837 (2012). https://doi.org/10.1093/eurheartj/ehr304

    Article  Google Scholar 

  6. Garry, P.S., Ezra, M., Rowland, M.J., Westbrook, J., Pattinson, K.T.S.: The role of the nitric oxide pathway in brain injury and its treatment – from bench to bedside. Exp. Neurol. 263, 235–243 (2015). https://doi.org/10.1016/j.expneurol.2014.10.017

    Article  Google Scholar 

  7. Hall, C.N., Garthwaite, J.: Inactivation of nitric oxide by rat cerebellar slices. J. Physiol. 577(2), 549–567 (2006). https://doi.org/10.1113/jphysiol.2006.118380

    Article  Google Scholar 

  8. Helms, C.C., Liu, X., Kim-Shapiro, D.B.: Recent insights into nitrite signaling processes in blood. Biol. Chem. 3, 319–329 (2016). https://doi.org/10.1515/hsz-2016-0263

    Article  Google Scholar 

  9. Ledo, A., Barbosa, R.M., Gerhardt, G.A., Cadenas, E., Laranjinha, J.: Concentration dynamics of nitric oxide in rat hippocampal subregions evoked by stimulation of the NMDA glutamate receptor. Proc. Natl. Acad. Sci. U. S. A. 102(48), 17483–17488 (2005). https://doi.org/10.1073/pnas.0503624102

    Article  Google Scholar 

  10. Mishra, A.: Binaural blood flow control by astrocytes: listening to synapses and the vasculature. J. Physiol. 595(6), 1885–1902 (2017). https://doi.org/10.1113/JP270979

    Article  Google Scholar 

  11. Moncada, S., Palmer, R.M.J., Higgs, E.A.: Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43(2), 109–142 (1991)

    Google Scholar 

  12. Santos, R.M., Lourenco, C.F., Ledo, A., Barbosa, R.M., Laranjinha, J.: Nitric oxide inactivation mechanisms in the brain: role in bioenergetics and neurodegeneration. Int. J. Cell Biol. 2012, 391914 (2012). https://doi.org/10.1155/2012/391914

    Article  Google Scholar 

  13. Sriram, K., Laughlin, J.G., Rangamani, P., Tartakovsky, D.M.: Shear-induced nitric ox- ide production by endothelial cells. Biophys. J. 111, 208–221 (2016). https://doi.org/10.1016/j.bpj.2016.05.034

    Article  Google Scholar 

  14. Buerk, D.G.: Can we model nitric oxide biotransport? A survey of mathematical models for a simple diatomic molecule with surprisingly complex biological activities. Annu. Rev. Biomed. Eng. 3, 109–143 (2001). https://doi.org/10.1146/annurev.bioeng.3.1.109

    Article  Google Scholar 

  15. Kavdia, M., Tsoukias, N.M., Popel, A.S.: Model of nitric oxide diffusion in an arteriole: impact of hemoglobin-based blood substitute. Am. J. Physiol. Heart Circ. Physiol. 282, H2245–H2253 (2002). https://doi.org/10.1152/ajpheart.00972.2001

    Article  Google Scholar 

  16. Vaughn, M.W., Kuo, L., Liao, J.C.: Effective diffusion distance of nitric oxide in the microcirculation. Vasc. Physiol. 274(5), H1705–H1714 (1998). https://doi.org/10.1152/ajpheart.1998.274.5.H1705

    Article  Google Scholar 

  17. Vaughn, M.W., Kuo, L., Liao, J.C.: Estimation of nitric oxide production and reaction rates in tissue by use of a mathematical model. Am. J. Physiol. 274(6), H2163–H2176 (1998). https://doi.org/10.1152/ajpheart.1998.274.6.H2163

    Article  Google Scholar 

  18. Drapaca, C.S., Tamis, A.: Mathematical modeling of the steady-state behavior of nitric oxide in brain Proceedings of AMMCS 2019 (under review)

    Google Scholar 

  19. Hodis, S., Zamir, M.: Solutions of the Maxwell viscoelastic equations for displacement and stress distributions within the arterial wall. Phys. Rev. E. 78, 021914 (2008)

    Article  Google Scholar 

  20. MATLAB R2019a, The MathWorks, Inc., Natick, Massachusetts, United States

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corina S. Drapaca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tamis, A., Drapaca, C.S. (2021). A Mathematical Model of Nitric Oxide Mechanotransduction in Brain. In: Notbohm, J., Karanjgaokar, N., Franck, C., DelRio, F.W. (eds) Mechanics of Biological Systems and Materials & Micro-and Nanomechanics & Research Applications. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-59765-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59765-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59764-1

  • Online ISBN: 978-3-030-59765-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics