Skip to main content

Biomechanical Testing of Human Red Blood Cells Under Controlled Oxygen Tension

  • Conference paper
  • First Online:
Mechanics of Biological Systems and Materials & Micro-and Nanomechanics & Research Applications

Abstract

Red blood cells are subjected to dynamic loads of shear and oxidative stresses when they traverse through the blood circulation system. Cell membranes are not only subjected to mechanical forces but also oxidative damage as a result of hypoxia. We develop an experimental strategy that can subject biological cells to well-controlled shear and gaseous microenvironment in a microfluidic device. Significant changes in cell deformability and relaxation characteristics due to variation in oxygen tension are observed and quantified. Our results demonstrate that hypoxia can lead to significant loss of deformability in red blood cells. The relationship between the membrane fatigue degradation and the repeated stressing conditions of blood circulation can be further investigated using the developed platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mohandas, N., Gallagher, P.G.: Red cell membrane: past, present, and future. Blood. 112(10), 3939–3948 (2008)

    Article  Google Scholar 

  2. Lang, F., Lang, E., Foller, M.: Physiology and pathophysiology of eryptosis. Transfus. Med. Hemother. 39(5), 308–314 (2012)

    Article  Google Scholar 

  3. Suresh, S., Spatz, J., Mills, J.P., Micoulet, A., Dao, M., Lim, C.T., Beil, M., Seufferlein, T.: Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater. 1(1), 15–30 (2005)

    Article  Google Scholar 

  4. Suresh, S.: Biomechanics and biophysics of cancer cells. Acta Biomater. 3(4), 413–438 (2007)

    Article  Google Scholar 

  5. Discher, D., Dong, C., Fredberg, J.J., Guilak, F., Ingber, D., Janmey, P., Kamm, R.D., Schmid-Schonbein, G.W., Weinbaum, S.: Biomechanics: cell research and applications for the next decade. Ann. Biomed. Eng. 37(5), 847–859 (2009)

    Article  Google Scholar 

  6. Barabino, G.A., Platt, M.O., Kaul, D.K.: Sickle Cell Biomechanics. Annu. Rev. Biomed. Eng. 12, 345–367 (2010)

    Article  Google Scholar 

  7. Sakuma, S., Kuroda, K., Tsai, C.H.D., Fukui, W., Arai, F., Kaneko, M.: Red blood cell fatigue evaluation based on the close-encountering point between extensibility and recoverability. Lab Chip. 14(6), 1135–1141 (2014)

    Article  Google Scholar 

  8. Liu, J., Qiang, Y., Alvarez, O., Du, E.: Electrical impedance microflow cytometry with oxygen control for detection of sickle cells. Sensors Actuators B Chem. 255, 2392–2398 (2018)

    Article  Google Scholar 

  9. Du, E., Diez-Silva, M., Kato, G.J., Dao, M., Suresh, S.: Kinetics of sickle cell biorheology and implications for painful vasoocclusive crisis. Proc. Natl. Acad. Sci. 112(5), 1422–1427 (2015)

    Article  Google Scholar 

  10. Qiang, Y., Liu, J., Dao, M., Suresh, S., Du, E.: Mechanical fatigue of human red blood cells. Proc. Natl. Acad. Sci. 116(40), 19828–19834 (2019)

    Article  Google Scholar 

  11. Qiang, Y., Liu, J., Du, E.: Dynamic fatigue measurement of human erythrocytes using dielectrophoresis. Acta Biomater. 57, 352–362 (2017)

    Article  Google Scholar 

  12. Qiang, Y., Liu, J., Yang, F., Dieujuste, D., Du, E.: Modeling erythrocyte electrodeformation in response to amplitude modulated electric waveforms. Sci. Rep. 8(1), 10224 (2018)

    Article  Google Scholar 

  13. Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 9(7), 671–675 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF Grant No. 1635312, No. 1464102, and NIH Grant 1OT2HL152638. E.D. and Y.Q. acknowledge support from NIH Grant 5R01EB025819.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Du, E., Qiang, Y. (2021). Biomechanical Testing of Human Red Blood Cells Under Controlled Oxygen Tension. In: Notbohm, J., Karanjgaokar, N., Franck, C., DelRio, F.W. (eds) Mechanics of Biological Systems and Materials & Micro-and Nanomechanics & Research Applications. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-59765-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59765-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59764-1

  • Online ISBN: 978-3-030-59765-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics