Abstract
Search-based approaches have been successfully used as clustering algorithms in several domains. However, little research has looked into their effectiveness for clustering tasks commonly faced in Software Engineering (SE). This short replication paper presents a preliminary investigation on the use of Genetic Algorithm (GA) to the problem of mobile application categorisation. Our results show the feasibility of GA-based clustering for this task, which we hope will foster new avenues for Search-Based Software Engineering (SBSE) research in this area.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Modified GAMA code can be found here: https://github.com/afnan-s/gama.
- 3.
The cluster centre is the arithmetic mean of all the points belonging to the cluster.
- 4.
Running time for GAC with k = 24, population = 500, generations = 1000.
References
Al-Subaihin, A., Sarro, F., Black, S., Capra, L.: Empirical comparison of text-based mobile apps similarity measurement techniques. EMSE 24(6), 3290–3315 (2019)
Al-Subaihin, A.A., et al.: Clustering mobile apps based on mined textual features. In: ESEM 2016 (2016)
AlSubaihin, A., Sarro, F., Black, S., Capra, L., Harman, M.: App store effects on software engineering practices. IEEE TSE (2019). https://doi.org/10.1109/TSE.2019.2891715
Auch, M., Weber, M., Mandl, P., Wolff, C.: Similarity-based analyses on software applications: a systematic literature review. JSS 168 (2020). https://doi.org/10.1016/j.jss.2020.110669. Article No. 110669
Ceccato, M., Falcarin, P., Cabutto, A., Frezghi, Y.W., Staicu, C.A.: Search based clustering for protecting software with diversified updates. In: SSBSE 2016 (2016)
Doval, D., Mancoridis, S., Mitchell, B.: Automatic clustering of software systems using a genetic algorithm. In: Proceedings of STEP 1999. IEEE Computer Society (1999)
Ferrucci, F., Salza, P., Sarro, F.: Using hadoop mapreduce for parallel genetic algorithms: a comparison of the global, grid and island models. ECJ 26(4), 535–567 (2018)
Gorla, A., Tavecchia, I., Gross, F., Zeller, A.: Checking app behavior against app descriptions. In: ICSE 2014 (2014)
Harman, M., Al-Subaihin, A., Jia, Y., Martin, W., Sarro, F., Zhang, Y.: Mobile app and app store analysis, testing and optimisation. In: MOBILESoft 2016 (2016)
Hruschka, E., Campello, R., Freitas, A., de Carvalho, A.: A survey of evolutionary algorithms for clustering. IEEE TCMCC 39(2), 133–155 (2009)
Huang, J., Liu, J., Yao, X.: A multi-agent evolutionary algorithm for software module clustering problems. Soft Comput. 21(12), 3415–3428 (2016). https://doi.org/10.1007/s00500-015-2018-5
Martin, W., Sarro, F., Jia, Y., Zhang, Y., Harman, M.: A survey of app store analysis for software engineering. IEEE TSE 43(9), 817–847 (2017)
Maulik, U., Bandyopadhyay, S.: Genetic algorithm-based clustering technique. Pattern Recogn. 33(9), 1455–1465 (2000)
Nayebi, M., Farrahi, H., Lee, A., Cho, H., Ruhe, G.: More insight from being more focused: analysis of clustered market apps. In: WAMA 2016 (2016)
Praditwong, K., Harman, M., Yao, X.: Software module clustering as a multi-objective search problem. IEEE TSE 37(2), 264–282 (2011)
Rodrigues, J., Vasconcelos, G., Tin’os, R.: GAMA: Genetic Approach to Maximize Clustering Criterion (2019). https://github.com/jairsonrodrigues/gama
Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. JCAM 20, 53–65 (1987)
Sarro, F., Harman, M., Jia, Y., Zhang, Y.: Customer rating reactions can be predicted purely using app features. In: RE 2018 (2018)
Sarro, F., Al-Subaihin, A.A., Harman, M., Jia, Y., Martin, W., Zhang, Y.: Feature lifecycles as they spread, migrate, remain, and die in app stores. In: RE 2015 (2015)
Sarro, F., Petrozziello, A., He, D.Q., Yoo, S.: A new approach to distribute MOEA pareto front computation. In: GECCO 2020 (2020)
Scrucca, L.: GA: a package for genetic algorithms in R. J. Stat. Softw. 53(4), 1–37 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Al-Subaihin, A.A., Sarro, F. (2020). Exploring the Use of Genetic Algorithm Clustering for Mobile App Categorisation. In: Aleti, A., Panichella, A. (eds) Search-Based Software Engineering. SSBSE 2020. Lecture Notes in Computer Science(), vol 12420. Springer, Cham. https://doi.org/10.1007/978-3-030-59762-7_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-59762-7_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59761-0
Online ISBN: 978-3-030-59762-7
eBook Packages: Computer ScienceComputer Science (R0)