Skip to main content

Energy Management Systems for Microgrids

  • Chapter
  • First Online:
Microgrids

Part of the book series: Power Systems ((POWSYS))

  • 880 Accesses

Abstract

Energy management system (EMS) has a vital role in the operation of a microgrid (MG) in the hourly or minute-by-minute time-scales. EMS coordinates with the other systems such as advanced metering infrastructure (AMI), maintenance scheduling, outage management, distribution management, and weather forecasting systems to gather an extensive amount of data on a real-time horizon. The gathered data is precisely processed to generate appropriate control signals to achieve the predetermined economic or technical goals. However, it is a hierarchical decision making including daily, hourly, and real-time scheduling. In this chapter, the performance of EMS is analyzed in both normal state and contingency conditions. Normal operation mainly focuses on economic aspects, whilst in the contingency state, EMS should guarantee the security of the system. This chapter presents a conceptual explanation on this topic along with the mathematical modelling and some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zia, M. F., Elbouchikhi, E., & Benbouzid, M. (2018). Microgrids energy management systems: A critical review on methods, solutions, and prospects. Applied Energy, 222, 1033–1055.

    Article  Google Scholar 

  2. Palma-Behnke, R., et al. (2013). A microgrid energy management system based on the rolling horizon strategy. IEEE Transactions on Smart Grid, 4(2), 996–1006.

    Article  Google Scholar 

  3. G. Graditi, M. G. Ippolito, E. R. Sanseverino, and G. Zizzo, Optimal set points regulation of distributed generation units in micro-grids under islanded operation, In 2010 IEEE International Symposium on Industrial Electronics, 2010, pp. 2253–2260.

    Google Scholar 

  4. Chen, C., Duan, S., Cai, T., Liu, B., & Hu, G. (2011). Smart energy management system for optimal microgrid economic operation. IET Renewable Power Generation, 5(3), 258–267.

    Article  Google Scholar 

  5. M. L. Di Silvestre, G. Graditi, M. G. Ippolito, E. R. Sanseverino, and G. Zizzo, “Robust multi-objective optimal dispatch of distributed energy resources in micro-grids,” In 2011 IEEE Trondheim Power Tech, 2011, pp. 1–5.

    Google Scholar 

  6. Sanseverino, E. R., Di Silvestre, M. L., Ippolito, M. G., De Paola, A., & Re, G. L. (2011). An execution, monitoring and replanning approach for optimal energy management in microgrids. Energy, 36(5), 3429–3436.

    Article  Google Scholar 

  7. R. Palma-Behnke, C. Benavides, E. Aranda, J. Llanos, and D. Saez, “Energy management system for a renewable based microgrid with a demand side management mechanism,” In 2011 IEEE symposium on computational intelligence applications in smart grid (CIASG), 2011, pp. 1–8.

    Google Scholar 

  8. Bustos, C., Watts, D., & Ren, H. (2012). Microgrid operation and design optimization with synthetic wins and solar resources. IEEE Latin America Transactions, 10(2), 1550–1562.

    Article  Google Scholar 

  9. X. Zhang, R. Sharma, and Y. He, “Optimal energy management of a rural microgrid system using multi-objective optimization,” In 2012 IEEE PES innovative smart grid technologies (ISGT), 2012, pp. 1–8.

    Google Scholar 

  10. Mohamed, F. A., & Koivo, H. N. (2012). Multiobjective optimization using mesh adaptive direct search for power dispatch problem of microgrid. International Journal of Electrical Power & Energy Systems, 42(1), 728–735.

    Article  Google Scholar 

  11. G. Celli, F. Pilo, G. Pisano, and G. G. Soma, “Optimal participation of a microgrid to the energy market with an intelligent EMS,” In 2005 International Power Engineering Conference, 2005, pp. 663–668.

    Google Scholar 

  12. Siano, P., Cecati, C., Yu, H., & Kolbusz, J. (2012). Real time operation of smart grids via FCN networks and optimal power flow. IEEE Trans Ind Inform, 8(4), 944–952.

    Article  Google Scholar 

  13. A. G. Tsikalakis and N. D. Hatziargyriou, “Centralized control for optimizing microgrids operation,” In 2011 IEEE power and energy society general meeting, 2011, pp. 1–8.

    Google Scholar 

  14. Meng, L., Sanseverino, E. R., Luna, A., Dragicevic, T., Vasquez, J. C., & Guerrero, J. M. (2016). Microgrid supervisory controllers and energy management systems: A literature review. Renewable and Sustainable Energy Reviews, 60, 1263–1273.

    Article  Google Scholar 

  15. Logenthiran, T., Srinivasan, D., Khambadkone, A. M., & Aung, H. N. (2012). Multiagent system for real-time operation of a microgrid in real-time digital simulator. IEEE Transactions on Smart Grid, 3(2), 925–933.

    Article  Google Scholar 

  16. Colson, C. M., & Nehrir, M. H. (2013). Comprehensive real-time microgrid power management and control with distributed agents. IEEE Transactions on Smart Grid, 4(1), 617–627.

    Article  Google Scholar 

  17. Liang, H., Choi, B. J., Abdrabou, A., Zhuang, W., & Shen, X. S. (2012). Decentralized economic dispatch in microgrids via heterogeneous wireless networks. IEEE Journal on Selected Areas in Communications, 30(6), 1061–1074.

    Article  Google Scholar 

  18. Kanchev, H., Lu, D., Colas, F., Lazarov, V., & Francois, B. (2011). Energy management and operational planning of a microgrid with a PV-based active generator for smart grid applications. IEEE Transactions on Industrial Electronics, 58(10), 4583–4592.

    Article  Google Scholar 

  19. Olivares, D. E., Lara, J. D., Cañizares, C. A., & Kazerani, M. (2015). Stochastic-predictive energy management system for isolated microgrids. IEEE Transactions on Smart Grid, 6(6), 2681–2693.

    Article  Google Scholar 

  20. L. N. An and T. Quoc-Tuan, “Optimal energy management for grid connected microgrid by using dynamic programming method,” In 2015 IEEE Power & Energy Society General Meeting, 2015, pp. 1–5.

    Google Scholar 

  21. Shen, J., Jiang, C., Liu, Y., & Qian, J. (2016). A microgrid energy management system with demand response for providing grid peak shaving. Electric Power Components & Systems, 44(8), 843–852.

    Article  Google Scholar 

  22. Anglani, N., Oriti, G., & Colombini, M. (2017). Optimized energy management system to reduce fuel consumption in remote military microgrids. IEEE Transactions on Industry Applications, 53(6), 5777–5785.

    Article  Google Scholar 

  23. Zidan, A., & El-Saadany, E. F. (2013). Distribution system reconfiguration for energy loss reduction considering the variability of load and local renewable generation. Energy, 59, 698–707.

    Article  Google Scholar 

  24. S. B. Ganesh, K. Schoder, H.-J. Lai, A. Al-Hinai, and A. Feliachi, “Energy management system with automatic reconfiguration for electric shipboard power systems,” In Proc. of ASNE Reconfiguration and Survivability Symposium, RSS 2005, 2005.

    Google Scholar 

  25. Paridari, K., O’Mahony, N., Mady, A. E.-D., Chabukswar, R., Boubekeur, M., & Sandberg, H. (2017). A framework for attack-resilient industrial control systems: Attack detection and controller reconfiguration. Proceedings of the IEEE, 106(1), 113–128.

    Article  Google Scholar 

  26. M. Sadeghi, “Determination of ZIP parameters with least squares optimization method,” In 2009 IEEE Electrical Power & Energy Conference (EPEC), 2009, pp. 1–6.

    Google Scholar 

  27. H. Ahmadi, J. R. Martí, and A. Moshref, “Piecewise linear approximation of generators cost functions using max-affine functions,” In 2013 IEEE Power & Energy Society General Meeting, 2013, pp. 1–5.

    Google Scholar 

  28. M. A. G. De Brito, L. Galotto, L. P. Sampaio, G. de A. e Melo, and C. A. Canesin, “Evaluation of the main MPPT techniques for photovoltaic applications,” IEEE Transactions on Industrial Electronics, vol. 60, no. 3, pp. 1156–1167, 2012.

    Google Scholar 

  29. Sashirekha, A., Pasupuleti, J., Moin, N. H., & Tan, C. S. (2013). Combined heat and power (CHP) economic dispatch solved using Lagrangian relaxation with surrogate subgradient multiplier updates. International Journal of Electrical Power & Energy Systems, 44(1), 421–430.

    Article  Google Scholar 

  30. Moradi, S., Ghaffarpour, R., Ranjbar, A. M., & Mozaffari, B. (2017). Optimal integrated sizing and planning of hubs with midsize/large CHP units considering reliability of supply. Energy Conversion and Management, 148, 974–992.

    Article  Google Scholar 

  31. Zhang, Y., Wang, R., Zhang, T., Liu, Y., & Guo, B. (2016). Model predictive control-based operation management for a residential microgrid with considering forecast uncertainties and demand response strategies. IET Generation Transmission and Distribution, 10(10), 2367–2378.

    Article  Google Scholar 

  32. Panwar, L. K., Konda, S. R., Verma, A., Panigrahi, B. K., & Kumar, R. (2017). Operation window constrained strategic energy management of microgrid with electric vehicle and distributed resources. IET Generation Transmission and Distribution, 11(3), 615–626.

    Article  Google Scholar 

  33. Gan, L., Li, N., Topcu, U., & Low, S. H. (2015). Exact convex relaxation of optimal power flow in radial networks. IEEE Transactions on Automatic Control, 60(1), 72–87.

    Article  MathSciNet  Google Scholar 

  34. Šulc, P., Backhaus, S., & Chertkov, M. (2014). Optimal distributed control of reactive power via the alternating direction method of multipliers. IEEE Transactions on Energy Conversion, 29(4), 968–977.

    Article  Google Scholar 

  35. Vergara, P. P., López, J. C., da Silva, L. C., & Rider, M. J. (2017). Security-constrained optimal energy management system for three-phase residential microgrids. Electric Power Systems Research, 146, 371–382.

    Article  Google Scholar 

  36. S. M. Hashemi, V. Vahidinasab, M. S. Ghazizadeh, and J. Aghaei, “Reliability-oriented DG allocation in radial Microgrids equipped with smart consumer switching capability,” In 2019 International Conference on Smart Energy Systems and Technologies (SEST), 2019, pp. 1–6.

    Google Scholar 

  37. Lee, Y.-Y., & Baldick, R. (2013). A frequency-constrained stochastic economic dispatch model. IEEE Transactions on Power Apparatus and Systems, 28(3), 2301–2312.

    Article  Google Scholar 

  38. A. Hoke and D. Maksimović, “Active power control of photovoltaic power systems,” In 2013 1st IEEE Conference on Technologies for Sustainability (SusTech), 2013, pp. 70–77.

    Google Scholar 

  39. A. S. Dobakhshari, S. Azizi, and A. M. Ranjbar, “Control of microgrids: Aspects and prospects,” In 2011 International Conference on Networking, Sensing and Control, 2011, pp. 38–43.

    Google Scholar 

  40. Rahmann, C., & Castillo, A. (2014). Fast frequency response capability of photovoltaic power plants: The necessity of new grid requirements and definitions. Energies, 7(10), 6306–6322.

    Article  Google Scholar 

  41. P. Pourbeik, S. Soni, A. Gaikwad, and V. Chadliev, “Providing primary frequency response from photovoltaic power plants,” in Proc. CIGRE Symp., 2017, pp. 1–10.

    Google Scholar 

  42. Kerdphol, T., Rahman, F. S., Mitani, Y., Watanabe, M., & Kfeolu, S. (2018). Robust virtual inertia control of an islanded microgrid considering high penetration of renewable energy. IEEE Access, 6, 625–636.

    Article  Google Scholar 

  43. Hashemi, S. M., Vahidinasab, V., Ghazizadeh, M. S., & Aghaei, J. (2018). Valuing consumer participation in security enhancement of microgrids. IET Gener Transm Distrib.

    Google Scholar 

  44. Shekari, T., Aminifar, F., & Sanaye-Pasand, M. (2016). An analytical adaptive load shedding scheme against severe combinational disturbances. IEEE Transactions on Power Apparatus and Systems, 31(5), 4135–4143.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Vahidinasab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hashemi, S.M., Vahidinasab, V. (2021). Energy Management Systems for Microgrids. In: Anvari-Moghaddam, A., Abdi, H., Mohammadi-Ivatloo, B., Hatziargyriou, N. (eds) Microgrids. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-59750-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59750-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59749-8

  • Online ISBN: 978-3-030-59750-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics