Skip to main content

Real-Time Testing of Microgrids

  • Chapter
  • First Online:
Microgrids

Part of the book series: Power Systems ((POWSYS))

  • 881 Accesses

Abstract

The need for clean energy for development and growth gave rise to power electronic interfaced local renewable generation and microgrids. Researchers across the world have been working on a spectrum of issues pertaining to the field of microgrids, ranging from control, operation and management aspects for the islanded, grid connected modes and the seamless transition aspects, to the protection and the power quality issues. These proposed solutions need rigorous testing under a wide range of dynamic conditions, before actual field deployment under diverse environments. Thus there needs to be a focus to develop fast, safe, accurate and reliable testing methods. Accuracy, flexibility, scalability, compactness, ease of implementation and economic viability are some of the common parameters which are used in the benchmarking of a testing methodology. These objectives are mostly in conflict with each other and thus need fresh out of the box solutions for the design and development of the testing methodologies. The chapter presents the fundamentals of and a comparison between the various testing techniques - ranging from off-line to real-time (RT) simulations, rapid controller prototyping, hardware in the loop (HIL): both the signal level (CHIL) and power level (PHIL), RT power level emulation, test-bed platforms, hybrid approaches/combinations of these techniques and novel solutions such as digital twin, blockchain and internet of things (IoT) based approaches. The future challenges in the area of microgrid testing are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vijay, A. S., Doolla, S., & Chandorkar, M. (2017). Real-time testing approaches for microgrids. IEEE J. Emerg. Sel. Topics Power Electron., 5(3), 1356–1376. https://doi.org/10.1109/JESTPE.2017.2695486.

    Article  Google Scholar 

  2. Adzic, E. M., Adzic, M. S., Katic, V. A., Marcetic, D. P., & Celanovic, N. L. (2013). Development of high-reliability EV and HEV IM propulsion drive with ultra-low latency HIL environment. IEEE Trans. Ind. Informat., 9(2), 630–639. https://doi.org/10.1109/TII.2012.2222649.

    Article  Google Scholar 

  3. Steurer, M., Meeker, R., Schoder, K., & McLaren, P. (2011). Power hardware in- the-loop: A value proposition for early stage prototype testing. In Proceedings of the IEEE international 37th annual conference of industrial electronic society (IECON ‘11), November 2011, IEEE (pp. 3731–3735).

    Google Scholar 

  4. Issacs, A. (2017). Simulation technology: The evolution of power system modelling. IEEE Power and Energy Magz., 15(4), 88–102. https://doi.org/10.1109/MPE.2017.2690527.

    Article  Google Scholar 

  5. Siqueira, J. C. G., Bonatto, B. D., Marti, J. R., Hollman, J. A., & Dommel, H. W. (2015). A discussion about optimum time step size and maximum simulation time in EMTP-based programs. Int. J. of Electric Power and Energy Syst., Elsevier., 72, 24–32. https://doi.org/10.1016/j.ijepes. 2015. 02.007.

    Article  Google Scholar 

  6. Popovici, K., & Mosterman, P. J. (2013). Real-time simulation Technologies: Principles, methodologies, and applications (p. 645). Boca Raton: CRC Press. https://doi.org/10.1201/b12667-1.

    Book  Google Scholar 

  7. Faruque, M. D. O., et al. (2015). Real-time simulation technologies for power systems design, testing, and analysis. IEEE Power Energy Technol. Syst. J., 2(2), 63–73. https://doi.org/10.1109/JPETS.2015.2427370.

    Article  Google Scholar 

  8. Lauss, G. F., Faruque, M. O., Schoder, K., Dufour, C., Viehweider, A., & Langston, J. (2016). Characteristics and design of power hardware-in-the-loop simulations for electrical power systems. IEEE Transactions on Industrial Electronics, 63(1), 406–417. https://doi.org/10.1109/TIE.2015.2464308.

    Article  Google Scholar 

  9. Chen, Y., & Dinavahi, V. (2013). Multi-FPGA digital hardware design for detailed large-scale real-time electromagnetic transient simulation of power systems. IET Genr. Transm. Distrib., 7(5), 451–463. https://doi.org/10.1049/iet-gtd.2012.0374.

    Article  Google Scholar 

  10. Marti, J. R., & Lin, J. (1989). Suppression of numerical oscillations in the EMTP power systems. IEEE Transactions on Power Apparatus and Systems, 4(2), 739–747. https://doi.org/10.1109/59.193849.

    Article  Google Scholar 

  11. Dufour, C., & Belanger, J. (2014). On the use of real-time simulation technology in smart grid research and development. IEEE Transactions on Industry Applications, 50(6), 3963–3970. https://doi.org/10.1109/TIA.2014.2315507.

    Article  Google Scholar 

  12. Chen, Y., & Dinavahi, V. (2012). Digital hardware emulation of universal machine and universal line models for real-time electromagnetic transient simulation. IEEE Transactions on Industrial Electronics, 59(2), 1300–1309. https://doi.org/10.1109/TIE.2011.2157296.

    Article  Google Scholar 

  13. Panwar, M., Lundstrom, B., Langston, J., Suryanarayanan, S., & Chakraborty, S. (2013). An overview of real-time hardware-in-the-loop capabilities in digital simulation for electric microgrids. In Proceedings of the IEEE North Amer. Power Symp. (NAPS ‘13), September 2013, IEEE (pp. 1–6).

    Google Scholar 

  14. Sanchez, A., Castro, A., & Garrido, J. (2012). A comparison of simulation and hardware-in-the- loop alternatives for digital control of power converters. IEEE Trans. Ind. Informat., 8(3), 491–500. https://doi.org/10.1109/TII.2012.2192281.

    Article  Google Scholar 

  15. Edrington, C. S., Steurer, M., Langston, J., Mezyani, T. E., & Schoder, K. (2016). Characteristics and design of power hardware-in-the-loop simulations for electrical power systems. IEEE Transactions on Industrial Electronics, 63(1), 406–417. https://doi.org/10.1109/TIE.2015.2464308.

    Article  Google Scholar 

  16. Hatakeyama T, Riccobono A, Monti A. Stability and accuracy analysis of power hardware in the loop system with different interface algorithms. In: Proceedings of the IEEE 17th workshop control modeling power electron. (COMPEL ‘16), June 2016, IEEE; 2016. p. 1–8.

    Google Scholar 

  17. Yin, C., et al. (2016). Virtual impedance method of the power hardware-in-the loop simulation to improve its stability and accuracy. In Proceedings of the IEEE 8th international power electron. Motion control conference (IPEMC-ECCE Asia ‘16), may 2016, IEEE (pp. 2752–2758).

    Chapter  Google Scholar 

  18. Liegmann, E., Riccobono, A., & Monti, A. (2016). Wideband identification of impedance to improve accuracy and stability of power-hardware-in the loop simulations. In Proceedings of the IEEE international workshop Appl. Meas. Power Syst. (AMPS ‘16), September 2016, IEEE (pp. 1–6).

    Google Scholar 

  19. Dargahi, M., Ghosh, A., & Ledwich, G. (2014). Stability synthesis of power hardware-in-the-loop (PHIL) simulation. In Proceedings of the IEEE PES general meeting conference exposition, July 2014, IEEE (pp. 1–5).

    Google Scholar 

  20. Daniil, N., & Drury, D. (2016). Improving the stability of the battery emulator - pulsed current load Interface in a power hardware in-the-loop simulation. In Proceedings of 42nd annual conference of the IEEE industrial electronics society (IECON ‘16), October 2016, IEEE (pp. 2064–2069).

    Chapter  Google Scholar 

  21. Li, S., Qi, W., Tan, S. C., Hui, S. Y., & Tse, C. K. (2018). A general approach to programmable and reconfigurable emulation of power impedances. IEEE Transactions on Power Electronics, 33(1), 259–271. https://doi.org/10.1109/TPEL.2017.2663424.

    Article  Google Scholar 

  22. Shen, Z., & Dinavahi, V. (2017). Dynamic variable time-stepping schemes for real-time FPGA-based nonlinear electromagnetic transient emulation. IEEE Transactions on Industrial Electronics, 64(5), 4006–4016. https://doi.org/10.1109/TIE.2017.2652403.

    Article  Google Scholar 

  23. Araujo, E. P., Rosell, P. O., Mane, M. C., Robles, R. V., & Bellmunt, O. G. (2015). Renewable energy emulation concepts for microgrids. Renew. Sustain. Energy Rev. Elsevier., 50, 325–345. https://doi.org/10.1016/j.rser.2015.04.101.

    Article  Google Scholar 

  24. Vijay, A. S., Chandorkar, M. C., & Doolla, S. A system emulator for AC microgrid testing. IEEE Trans. Ind. Electron. 2019; IEEE Early Access. https://doi.org/10.1109/TIA.2019.2942275.

  25. Fajri, P., Lee, S., Prabhala, V. A. K., & Ferdowsi, M. (2016). Modeling and integration of electric vehicle regenerative and friction braking for motor/dynamometer test bench emulation. IEEE Transactions on Vehicular Technology, 65(6), 4264–4273. https://doi.org/10.1109/TVT.2015.2504363.

    Article  Google Scholar 

  26. Rabia, S., & Tang, S. (2013). Control Laws for the emulation of an electric vehicle drivetrain by two electric machines. In Proceedings of the IEEE vehicle power and propulsion conference (VPPC ‘13), October 2013, IEEE (pp. 1–7).

    Google Scholar 

  27. Alvarez, A. F., Garcia, M. P., Valderas, M. G., Lopez, J., & Sanz, M. (2017). HW/SW co-simulation system for enhancing hardware in the loop of power converter digital controllers. IEEE J. Emerg. Sel. Topics Power Electron., 5(4), 1779–1786. https://doi.org/10.1109/JESTPE.2017.2739710.

    Article  Google Scholar 

  28. Lundstrom B, Chakraborty S, Lauss G, Brundlinger, Conklin R. evaluation of system-integrated smart grid devices using software- and hardware-in-the-loop. In: Proceedings of the IEEE power energy society innovative smart grid technology conference (ISGT ‘16), September 2016, IEEE; 2016. p. 1–5.

    Google Scholar 

  29. Caldognetto, T., Santa, L. D., Magnone, P., & Mattavelli, P. (2017). Power electronics based active load for unintentional islanding Testbenches. IEEE Transactions on Industry Applications, 53(4), 3831–3839. https://doi.org/10.1109/TIA.2017.2694384.

    Article  Google Scholar 

  30. Technologies, O., & Electrification Magazine, I. E. E. E. (2017). Vol., 2, 5.

    Google Scholar 

  31. Donahue, E. J. (2019). Microgrids: Applications, Solutions, Case Studies, and Demonstrations, InTech Open Access Chapter. https://doi.org/10.5772/intechopen.83560.

    Book  Google Scholar 

  32. Shahinzadeh H, Moradi J, Gharehpetian G B, Nafisi H, Abedi M, Internet of Energy (IoE) in Smart Power Systems In: Proceedings of 5th Conference on Knowledge Based Engineering and Innovation (KBEI ‘19) 2019. p. 627–636.

    Google Scholar 

  33. Moness, M., & Moustafa, A. M. (2016). A survey of cyber-physical advances and challenges of wind energy conversion systems: Prospects for internet of energy. IEEE J Int. of Things., 3(2), 134–145. https://doi.org/10.1109/JIOT.2015.2478381.

    Article  Google Scholar 

  34. Di Silvestre, M. L., Gallo, P., Ippolito, M. G., Sanseverino, E. R., & Zizzo, G. (2018). A technical approach to the energy Blockchain in microgrids. IEEE Trans. Ind. Informat., 14(11), 4792–4803. https://doi.org/10.1109/TII.2018.2806357.

    Article  Google Scholar 

  35. Musleh, A. S., Yao, G., & Muyeen, S. M. (2019). Blockchain applications in smart grid–review and frameworks. IEEE Access, 7, 86746–86757. https://doi.org/10.1109/ACCESS.2019.2920682.

    Article  Google Scholar 

  36. Xu, Y., Sun, Y., Liu, X., & Zheng, Y. (2019). A digital-twin-assisted fault diagnosis using deep transfer learning. IEEE Access, 7, 19990–19999. https://doi.org/10.1109/ACCESS.2018.2890566.

    Article  Google Scholar 

  37. Khan A, Dahl M, Falkman P, Fabian M, Digital Twin for Legacy Systems: Simulation Model Testing and Validation In: Proceedings of IEEE 14th International Conference on Automation Science and Engineering (CASE ‘18) 2018. p. 421–426.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the support from India-UK Centre for Education and Research in Clean Energy (IUCERCE), a project funded by Department of Science and Technology, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suryanarayana Doolla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vijay, A.S., Doolla, S. (2021). Real-Time Testing of Microgrids. In: Anvari-Moghaddam, A., Abdi, H., Mohammadi-Ivatloo, B., Hatziargyriou, N. (eds) Microgrids. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-59750-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59750-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59749-8

  • Online ISBN: 978-3-030-59750-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics