Skip to main content

WAM-Based Hierarchical Control of Islanded AC Microgrids

  • Chapter
  • First Online:
Microgrids

Part of the book series: Power Systems ((POWSYS))

  • 850 Accesses

Abstract

This chapter presents a wide area measurement system (WAMS) based hierarchical control of islanded AC microgrids (IACMGs) with static and dynamic loads. The proposed WAMS-based hierarchical controller consists of a lower-level decentralized controller, for each inverter-interfaced distributed generation (IIDG) unit, accompanied by an upper-level multi-input-multi-output (MIMO) centralized controller. Furthermore, this chapter also analyzes the impact of signal transmission time delays on the performance of the proposed WAMS-based hierarchical controller by performing simulation study on its application to the typical IACMG system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parhizi, S., Lotfi; H., Khodaei, A., & Bahramirad. S., (2015). State of the art in research on microgrids: A review. IEEE Access, 3, 890–925.

    Article  Google Scholar 

  2. Chowdhury, S., Chowdhury, S. P., & Crossley, P. (2009). Microgrids and active distribution networks. London: Institution of Engineering and Technology.

    Book  Google Scholar 

  3. Kundur, P. (1994). Power system stability and control. New York: McGrawHill.

    Google Scholar 

  4. Kundur, P., et al. (2004). Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions. IEEE Transactions on Power Systems, 19(3), 1387–1401.

    Article  Google Scholar 

  5. Majumder, R. (2010). Some aspects of stability in microgrids. IEEE Transactions on Power Systems, 28(3), 3242–3253.

    Google Scholar 

  6. Xinhe, C., Wei, P., & Xisheng, T. (2010). Transient stability analyses of micro-grids with multiple distributed generations. In Proceedings of the International Conference Power System Technology (POWERCON).

    Google Scholar 

  7. Narendra, K. S., & Balakrishnan, J. (1994). A common Lyapunov function for stable LTI systems with commuting A-matrices. IEEE Transactions on Industrial Electronics, 39(12), 2469–2471.

    MathSciNet  MATH  Google Scholar 

  8. Majumder, R. (2013). Reactive power compensation in single-phase operation of microgrid. IEEE Transactions on Industrial Electronics, 60(4), 1403–1416.

    Article  Google Scholar 

  9. Olivares, D. E., et al. (2014). Trends in microgrid control. IEEE Transactions on Smart Grid, 5(4), 905–1919.

    Google Scholar 

  10. Liang, H., Choi, B. J., Zhuang, W., & Shen, X. (2013). Stability enhancement of decentralized inverter control through wireless communications in microgrids. IEEE Transactions on Smart Grid, 4(1), 21–331.

    Article  Google Scholar 

  11. Kahrobaeian, A., & Mohamed, Y. A.-R. I. (2014). Analysis and mitigation of low-frequency instabilities in autonomous medium-voltage converter-based microgrids with dynamic loads. IEEE Transactions on Industrial Electronics, 61(4), 1643–1658.

    Article  Google Scholar 

  12. Ovalle, A., Ramos, G., Bacha, S., Hably, A., & Rumeau, A. (2015). Decentralized control of voltage source converters in microgrids based on the application of instantaneous power theory. IEEE Transactions on Industrial Electronics, 62(2), 1152–1162.

    Article  Google Scholar 

  13. Raju, P. E. S. N., & Jain, T. (2017). Optimal decentralized supplementary inverter control loop to mitigate instability in an islanded microgrid with active and passive loads. International Journal of Emerging Electric Power Systems, 18(01).

    Google Scholar 

  14. Raju, P. E. S. N., & Jain, T. (2017). Robust optimal centralized controller to mitigate the small signal instability in an islanded inverter based microgrid with active and passive loads. International Journal of Electrical Power & Energy Systems, 90, 225–236.

    Article  Google Scholar 

  15. Guo, F., Wen, C., Mao, J., & Song, Y. D. (2015). Distributed secondary voltage and frequency restoration control of droop-controlled inverter-based microgrids. IEEE Transactions on Industrial Electronics, 62(7), 4355–4364.

    Article  Google Scholar 

  16. Wang, Y., Wang, X., Chen, Z., & Blaabjerg, F. (2017). Distributed optimal control of reactive power and voltage in islanded microgrids. IEEE Transactions on Industrial Electronics, 53(01), 340–349.

    Google Scholar 

  17. Zhao, Z., Yang, P., Guerrero, J. M., Xu, Z., & Green, T. C. (2016). Multiple-time-scales hierarchical frequency stability control strategy of medium-voltage isolated microgrid. IEEE Transactions on Power Electronics, 31(8), 5974–5991.

    Article  Google Scholar 

  18. Baghaee, H. R., Mirsalim, M., & Gharehpetian, G. B. (2016). Power calculation using RBF neural networks to improve power sharing of hierarchical control scheme in multi-DER microgrids. IEEE Journal of Emerging and Selected Topics in Power Electronics, 04(4), 1217–1225.

    Article  Google Scholar 

  19. Li, Z., Zang, C., Zeng, P., Yu, H., & Li, S. (2018). Fully distributed hierarchical control of parallel grid-supporting inverters in islanded AC microgrids. IEEE Transactions on Industrial Informatics, 14(2), 679–690.

    Article  Google Scholar 

  20. Raju, P. E. S. N., & Jain, T. (2018). Impact of load dynamics and load sharing among distributed generations on stability and dynamic performance of islanded AC microgrids. Electric Power Systems Research, 157, 200–210.

    Article  Google Scholar 

  21. Zolotas, A. C., Chaudhuri, B., Jaimoukha, I. M., & Korba, P. (2007). A study on LQG/LTR control for damping inter-area oscillations in power systems. IEEE Transactions on Control Systems Technology, 15(1), 151–160.

    Article  Google Scholar 

  22. Surinkaew, T., & Ngamroo, I. (2016). Hierarchical co-ordinated wide area and local controls of DFIG wind turbine and PSS for robust power oscillation damping. IEEE Transactions on Sustainable Energy, 7(3), 943–955.

    Article  Google Scholar 

  23. Stahlhut, J. W., Browne, T. J., Heydt, G. T., & Vittal, V. (2008). Latency viewed as a stochastic process and its impact on wide area power system control signals. IEEE Transactions on Power Systems, 23(1), 84–91

    Article  Google Scholar 

  24. Almutairi, A. (2010). Enhancement of Power System Stability Using Wide Area Measurement System Based Damping Controller, Ph.D. dissertation, The University of Manchester, Manchester.

    Google Scholar 

  25. Cheng, L., Chen, G., Zhang, F., Li, G., & Gao, W. (2014). Adaptive time delay compensator (ATDC) design for wide-area power system stabilizer. IEEE Transactions on Smart Grid, 5(6), 2957–2966.

    Article  Google Scholar 

  26. Milano, F. (2016). Small-signal stability analysis of large power systems with inclusion of multiple delays. IEEE Transactions on Power Systems, 31(4), 3257–3266.

    Article  Google Scholar 

  27. Beiraghi, M., & Ranjbar, A. M. (2016). Adaptive delay compensator for the robust wide-area damping controller design. IEEE Transactions on Power Systems, 31(6), 4966–4976.

    Article  Google Scholar 

  28. Ghosh, S., Folly, K. A., & Patel, A. (2018). Synchronized versus non-synchronized feedback for speed-based wide-area PSS: Effect of time-delay. IEEE Transactions on Smart Grid, 9(5), 3976–3985.

    Article  Google Scholar 

  29. Aminifar, F., Fotuhi-Firuzabad, M., Safdarian, A., Davoudi, A., & Shahidehpour, M. (2015). Synchrophasor measurement technology in power systems: Panorama and state-of-the-art. IEEE Access, 2, 1607–1628.

    Article  Google Scholar 

  30. Li, J., Chen, Z., Cai, D., Zhen, W., & Huang, Q. (2016). Delay-dependent stability control for power system with multiple time-delays. IEEE Transactions on Power Systems, 31(3), 2316–2326.

    Article  Google Scholar 

  31. Li, M., & Chen, Y. (2018). A wide-area dynamic damping controller based on robust H∞ control for wide-area power systems with random delay and packet dropout. IEEE Transactions on Power Systems, 33(4), 4026–4037.

    Article  Google Scholar 

  32. National Academies of Sciences, Engineering, and Medicine and Others (2016). Analytic Research Foundations for the Next-Generation Electric Grid. Washington, DC: National Academies Press.

    Google Scholar 

  33. Raju, P. E. S. N., & Jain, T. (2018). A two-level hierarchical controller to enhance stability and dynamic performance of islanded inverter-based microgrids with static and dynamic loads. IEEE Transactions on Industrial Informatics, 15(5), 2786–2797.

    Article  Google Scholar 

  34. Raju, P. E. S. N., & Jain, T. (2019). Development and validation of a generalized modeling approach for islanded inverter-based microgrids with static and dynamic loads. International Journal of Electrical Power & Energy Systems, 108, 177–190.

    Article  Google Scholar 

  35. Xue, D., Chen, Y. Q., & Atherton, D. P., et al. (2007). Linear Feedback Control: Analysis and Design with MATLAB. New York: SIAM.

    Book  Google Scholar 

  36. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 06(2), 182–197.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. N. Raju P .

Editor information

Editors and Affiliations

Appendix

Appendix

IIDG Units Ratings: IIDG1-(10 + j6) kVA; IIDG2-(15 + j9) kVA; IIDG3-(20 + j12) kVA; IIDG4-(25 + j15) kVA. Static Active and Reactive Power Droop Gains: mP1 = 6.28e− 4 rad/s/W, mP2 = 4.18e− 4 rad/s/W, mP3 = 3.14e− 4 rad/s/W, mP4 = 2.52e− 4, nQ1 = 1.66e− 3 V/VAR, nQ2 = 1.11e− 3 V/VAR, nQ3 = 8.33e− 4 V/VAR and nQ4 = 6.66e− 4 V/VAR. IIDG unit Parameters: Lf = 1.35 mH, Cf = 50 μF, Rf = 0.1 Ω, fsw = 8 kHz, wc = 31.41 rad/s, Kpv = 0.05, Kiv = 390, Kpi = 10.5, Kii = 16e− 3, F = 0.75, fnl = 50.5 Hz, Rc = 0.03 Ω, Lc = 0.35 mH. RIAL Parameters: Lf = 2.3mH, Cf = 8.8 μF, Rf = 0.1 Ω, fsw = 10 kHz, wc = 31.41 rad/s, Kpv = 0.5, Kiv = 150, Kpi = 7, Kii = 25e3, Rc = 0.03 Ω, Lc = 0.93 mH. Line Parameters: Line 1: (0.23 + j0.11) Ω, Line 2: (0.35 + j0.58) Ω, Line 3: (0.30 + j0.47) Ω. Load Parameters: Induction Motor Load: 10 hp, 400 V, 50 Hz, r s = 0.7834 Ω, L ss = 127.1 mH, r r = 0.7402 Ω, L rr = 127.1 mH, L m = 124.1 mH, P=4, T L = 47.75 N m; CPL: 12 kVA, rCPL=13.224 Ω /phase and cosα=0.85; RIAL: 12 kW and RRIAL=40.833 Ω; R Load: 25 kW, RRLoad=6.347 Ω/phase and V DC = 700 V.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raju P, E.S.N., Jain, T. (2021). WAM-Based Hierarchical Control of Islanded AC Microgrids. In: Anvari-Moghaddam, A., Abdi, H., Mohammadi-Ivatloo, B., Hatziargyriou, N. (eds) Microgrids. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-59750-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59750-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59749-8

  • Online ISBN: 978-3-030-59750-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics