Skip to main content

Dynamic Assignment Vehicle Routing Problem with Time Windows

  • Conference paper
  • First Online:
Computational Logistics (ICCL 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12433))

Included in the following conference series:

  • 2409 Accesses

Abstract

Offering time windows to receivers of last-mile delivery is becoming a distinguishing factor. However, we see that in practice carriers have to create routes for their vehicles based on destination information, that is just being revealed when a parcel arrives in the depot. The parcel has to be assigned directly to a vehicle, making this a Dynamic Assignment Vehicle Routing Problem. Incorporating time windows is hard in this case. In this paper an approach is presented to solve this problem including Time Windows. A comparison is made with a real observation and with a solution method for the base problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Joerss, M., Neuhaus, F., Schröder, J.: How customer demands are reshaping lastmile delivery. Travel Transp. Logist. 1, 4 (2016)

    Google Scholar 

  2. Pillac, V., Gendreau, M., Guéret, C., Medaglia, A.L.: A review of dynamic vehicle routing problems. Eur. J. Oper. Res. 225(1), 1–11 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Phillipson, F., De Koff, S., van Ommeren, C., Quak, H.: Dynamic assignment vehicle routing problem with generalised capacity and unknown workload. In: Proceedings of 9th International Conference on Operations Research and Enterprise Systems (ICORES) (2020)

    Google Scholar 

  4. Phillipson, F., de Koff, S.: Immediate parcel to vehicle assignment for cross docking in city logistics. In: Proceedings of 9th International Conference on Operations Research and Enterprise Systems (ICORES) (2020)

    Google Scholar 

  5. Baldacci, R., Toth, P., Vigo, D.: Recent advances in vehicle routing exact algorithms. 4OR 5(4), 269–298 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Rincon-Garcia, N., Waterson, B., Cherrett, T.J., Salazar-Arrieta, F.: A metaheuristic for the time-dependent vehicle routing problem considering driving hours regulations-an application in city logistics. Transp. Res. Part A Policy Pract. 137, 429–446 (2018)

    Article  Google Scholar 

  7. Yao, Y., et al.: ADMM-based problem decomposition scheme for vehicle routing problem with time windows. Transp. Res. Part B Methodol. 129, 156–174 (2019)

    Article  Google Scholar 

  8. Van Duin, J., De Goffau, W., Wiegmans, B., Tavasszy, L., Saes, M.: Improving home delivery efficiency by using principles of address intelligence for B2C deliveries. Transp. Res. Procedia 12, 14–25 (2016)

    Article  Google Scholar 

  9. Shao, S., Xu, G., Li, M., Huang, G.Q.: Synchronizing e-commerce city logistics with sliding time windows. Transp. Res. Part E Logist. Transp. Rev. 123, 17–28 (2019)

    Article  Google Scholar 

  10. Agatz, N., Campbell, A., Fleischmann, M., Savelsbergh, M.: Time slot management in attended home delivery. Transp. Sci. 45(3), 435–449 (2011)

    Article  Google Scholar 

  11. Solomon, M.M., Desrosiers, J.: Survey paper–time window constrained routing and scheduling problems. Transp. Sci. 22(1), 1–13 (1988)

    Article  MATH  Google Scholar 

  12. Ghannadpour, S.F., Noori, S., Tavakkoli-Moghaddam, R., Ghoseiri, K.: A multi-objective dynamic vehicle routing problem with fuzzy time windows: model, solution and application. Appl. Soft Comput. 14, 504–527 (2014)

    Article  Google Scholar 

  13. Chen, S., Chen, R., Wang, G.G., Gao, J., Sangaiah, A.K.: An adaptive large neighborhood search heuristic for dynamic vehicle routing problems. Comput. Electr. Eng. 67, 596–607 (2018)

    Article  Google Scholar 

  14. de Armas, J., Melián-Batista, B.: Variable neighborhood search for a dynamic rich vehicle routing problem with time windows. Comput. Indust. Eng. 85, 120–131 (2015)

    Article  Google Scholar 

  15. Schyns, M.: An ant colony system for responsive dynamic vehicle routing. Eur. J. Oper. Res. 245(3), 704–718 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Spliet, R., Desaulniers, G.: The discrete time window assignment vehicle routing problem. Eur. J. Oper. Res. 244(2), 379–391 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dalmeijer, K., Spliet, R.: A branch-and-cut algorithm for the time window assignment vehicle routing problem. Comput. Oper. Res. 89, 140–152 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Los, K.: Improving delivery efficiency using a dynamic assignment method. Master’s thesis, Erasmus University (2019)

    Google Scholar 

  19. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning. STS, vol. 103. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-7138-7

    Book  MATH  Google Scholar 

  20. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper. Res. 35(2), 254–265 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bräysy, O., Gendreau, M.: Vehicle routing problem with time windows, Part I: route construction and local search algorithms. Transp. Sci. 39(1), 104–118 (2005)

    Article  Google Scholar 

  22. Quak, H., van Kempen, E., van Dijk, B., Phillipson, F.: Self-organization in parcel distribution-SOLiD’s first results. In: IPIC 2019 6th International Physical Internet Conference London (2019)

    Google Scholar 

Download references

Acknowledgements

The authors like to thank the Dutch Topsector Logistics (TKI Dinalog and NWO) for the support to Project SOLiD (NWO project number 439.17.551). The aims of the SOLiD project [22] is to bridge the gap between the long(er) term vision and the short term daily logistics operations in self-organising parcel distribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Phillipson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Los, K.J., Phillipson, F., van Kempen, E.A., Quak, H.J., Stelwagen, U. (2020). Dynamic Assignment Vehicle Routing Problem with Time Windows. In: Lalla-Ruiz, E., Mes, M., Voß, S. (eds) Computational Logistics. ICCL 2020. Lecture Notes in Computer Science(), vol 12433. Springer, Cham. https://doi.org/10.1007/978-3-030-59747-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59747-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59746-7

  • Online ISBN: 978-3-030-59747-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics