Skip to main content

MAGIC: Multi-scale Heterogeneity Analysis and Clustering for Brain Diseases

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

There is a growing amount of clinical, anatomical and functional evidence for the heterogeneous presentation of neuropsychiatric and neurodegenerative diseases such as schizophrenia and Alzheimer’s Disease (AD). Elucidating distinct subtypes of diseases allows a better understanding of neuropathogenesis and enables the possibility of developing targeted treatment programs. Recent semi-supervised clustering techniques have provided a data-driven way to understand disease heterogeneity. However, existing methods do not take into account that subtypes of the disease might present themselves at different spatial scales across the brain. Here, we introduce a novel method, MAGIC, to uncover disease heterogeneity by leveraging multi-scale clustering. We first extract multi-scale patterns of structural covariance (PSCs) followed by a semi-supervised clustering with double cyclic block-wise optimization across different scales of PSCs. We validate MAGIC using simulated heterogeneous neuroanatomical data and demonstrate its clinical potential by exploring the heterogeneity of AD using T1 MRI scans of 228 cognitively normal (CN) and 191 patients. Our results indicate two main subtypes of AD with distinct atrophy patterns that consist of both fine-scale atrophy in the hippocampus as well as large-scale atrophy in cortical regions. The evidence for the heterogeneity is further corroborated by the clinical evaluation of two subtypes, which indicates that there is a subpopulation of AD patients that tend to be younger and decline faster in cognitive performance relative to the other subpopulation, which tends to be older and maintains a relatively steady decline in cognitive abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/anbai106/MAGIC.

References

  1. Rodrigues-Amorim, D., Rivera-Baltanás, T., López, M., Spuch, C., Olivares, J.M., Agís-Balboa, R.C.: Schizophrenia: a review of potential biomarkers. J. Psychiatr. Res. 93, 37–49 (2017)

    Article  Google Scholar 

  2. van Erp, T.G., et al.: Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol. Psychiatry 21(4), 547–553 (2016)

    Article  Google Scholar 

  3. Okada, N., et al.: Abnormal asymmetries in subcortical brain volume in schizophrenia. Mol. Psychiatry 21(10), 1460–1466 (2016)

    Article  Google Scholar 

  4. Habeck, C., et al.: Multivariate and univariate neuroimaging biomarkers of Alzheimer’s disease. Neuroimage 40(4), 1503–1515 (2008)

    Article  Google Scholar 

  5. Hampel, H., Bürger, K., Teipel, S.J., Bokde, A.L., Zetterberg, H., Blennow, K.: Core candidate neurochemical and imaging biomarkers of Alzheimer’s disease. Alzheimer’s Dement. 4(1), 38–48 (2008)

    Article  Google Scholar 

  6. Ewers, M., Sperling, R.A., Klunk, W.E., Weiner, M.W., Hampel, H.: Neuroimaging markers for the prediction and early diagnosis of Alzheimer’s disease dementia. Trends Neurosci. 34(8), 430–442 (2011)

    Article  Google Scholar 

  7. Noh, Y., et al.: Anatomical heterogeneity of Alzheimer’s disease: based on cortical thickness on MRIs. Neurology 83(21), 1936–1944 (2014)

    Article  Google Scholar 

  8. Poulakis, K., et al.: Heterogeneous patterns of brain atrophy in Alzheimer’s disease. Neurobiol. Aging 65, 98–108 (2018)

    Article  Google Scholar 

  9. Whitwell, J.L., et al.: Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: a cluster analysis study. Brain 132(11), 2932–2946 (2009)

    Article  Google Scholar 

  10. Martí-Juan, G., Sanroma, G., Piella, G. and Alzheimer’s Disease Neuroimaging Initiative: Revealing heterogeneity of brain imaging phenotypes in Alzheimer’s disease based on unsupervised clustering of blood marker profiles. PloS One 14(3), 1–20 (2019)

    Google Scholar 

  11. Varol, E., Sotiras, A., Davatzikos, C., Alzheimer’s Disease Neuroimaging Initiative: HYDRA: revealing heterogeneity of imaging and genetic patterns through a multiple max-margin discriminative analysis framework. Neuroimage 145, 346–364 (2017)

    Google Scholar 

  12. Sotiras, A., Resnick, S.M., Davatzikos, C.: Finding imaging patterns of structural covariance via non-negative matrix factorization. Neuroimage 108, 1–16 (2015)

    Article  Google Scholar 

  13. Wright, S.J.: Coordinate descent algorithms. Math. Program. 151(1), 3–34 (2015). https://doi.org/10.1007/s10107-015-0892-3

    Article  MathSciNet  MATH  Google Scholar 

  14. Doshi, J., et al.: MUSE: MUlti-atlas region segmentation utilizing ensembles of registration algorithms and parameters, and locally optimal atlas selection. Neuroimage 127, 186–195 (2016)

    Google Scholar 

  15. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011)

    Google Scholar 

  16. Varoquaux, G., Raamana, P.R., Engemann, D.A., Hoyos-Idrobo, A., Schwartz, Y., Thirion, B.: Assessing and tuning brain decoders: cross-validation, caveats, and guidelines. NeuroImage 145, 166–179 (2017)

    Article  Google Scholar 

  17. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)

    Article  Google Scholar 

  18. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc.: Ser. B (Methodol.) 57(1), 289–300 (1995)

    MathSciNet  MATH  Google Scholar 

  19. Lakens, D.: Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front. Psychol. 4, 863 (2013)

    Article  Google Scholar 

  20. Samper-Gonzalez, J., et al.: Reproducible evaluation of classification methods in Alzheimer’s disease: framework and application to MRI and PET data. NeuroImage 183, 504–521 (2018)

    Article  Google Scholar 

  21. Wen, J., et al.: Reproducible evaluation of diffusion MRI features for automatic classification of patients with Alzheimer’s disease. Neuroinformatics 1–22 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhao Wen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wen, J., Varol, E., Chand, G., Sotiras, A., Davatzikos, C. (2020). MAGIC: Multi-scale Heterogeneity Analysis and Clustering for Brain Diseases. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12267. Springer, Cham. https://doi.org/10.1007/978-3-030-59728-3_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59728-3_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59727-6

  • Online ISBN: 978-3-030-59728-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics