Skip to main content

Differentiable Deconvolution for Improved Stroke Perfusion Analysis

Part of the Lecture Notes in Computer Science book series (LNIP,volume 12267)

Abstract

Perfusion imaging is the current gold standard for acute ischemic stroke analysis. It allows quantification of the salvageable and non-salvageable tissue regions (penumbra and core areas respectively). In clinical settings, the singular value decomposition (SVD) deconvolution is one of the most accepted and used approaches for generating interpretable and physically meaningful maps. Though this method has been widely validated in experimental and clinical settings, it might produce suboptimal results because the chosen inputs to the model cannot guarantee optimal performance. For the most critical input, the arterial input function (AIF), it is still controversial how and where it should be chosen even though the method is very sensitive to this input. In this work we propose an AIF selection approach that is optimized for maximal core lesion segmentation performance. The AIF is regressed by a neural network optimized through a differentiable SVD deconvolution, aiming to maximize core lesion segmentation agreement with ground truth data. To our knowledge, this is the first work exploiting a differentiable deconvolution model with neural networks. We show that our approach is able to generate AIFs without any manual annotation, and hence avoiding manual rater’s influences. The method achieves manual expert performance in the ISLES18 dataset. We conclude that the methodology opens new possibilities for improving perfusion imaging quantification with deep neural networks.

Keywords

  • Perfusion imaging
  • SVD deconvolution
  • Deep learning

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-59728-3_58
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-59728-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Albers, G.W., et al.: Ischemic core and hypoperfusion volumes predict infarct size in SWIFT PRIME. Ann. Neurol. 79(1), 76–89 (2016)

    CrossRef  Google Scholar 

  2. Bertels, J., Robben, D., Vandermeulen, D., Suetens, P.: Optimization with soft dice can lead to a volumetric bias. arXiv preprint arXiv:1911.02278 (2019)

  3. Bland, J.M., Altman, D.: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327(8476), 307–310 (1986)

    CrossRef  Google Scholar 

  4. Calamante, F.: Arterial input function in perfusion MRI: a comprehensive review. Progr. Nucl. Magn. Reson. Spectrosc. 74, 1–32 (2013)

    CrossRef  Google Scholar 

  5. Cereda, C.W., et al.: A benchmarking tool to evaluate computer tomography perfusion infarct core predictions against a DWI standard. J. Cereb. Blood Flow Metab. 36(10), 1780–1789 (2016)

    CrossRef  Google Scholar 

  6. Fan, S., et al.: An automatic estimation of arterial input function based on multi-stream 3d CNN. Front. Neuroinform. 13, 49 (2019)

    CrossRef  Google Scholar 

  7. Fieselmann, A., Kowarschik, M., Ganguly, A., Hornegger, J., Fahrig, R.: Deconvolution-based CT and MR brain perfusion measurement: theoretical model revisited and practical implementation details. J. Biomed. Imaging 2011, 14 (2011)

    Google Scholar 

  8. Ionescu, C., Vantzos, O., Sminchisescu, C.: Training deep networks with structured layers by matrix backpropagation. arXiv preprint arXiv:1509.07838 (2015)

  9. Kistler, M., Bonaretti, S., Pfahrer, M., Niklaus, R., Büchler, P.: The virtual skeleton database: an open access repository for biomedical research and collaboration. J. Med. Internet Res. 15(11), e245 (2013)

    CrossRef  Google Scholar 

  10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  11. Lin, L., Bivard, A., Krishnamurthy, V., Levi, C.R., Parsons, M.W.: Whole-brain CT perfusion to quantify acute ischemic penumbra and core. Radiology 279(3), 876–887 (2016)

    CrossRef  Google Scholar 

  12. Maier, O., et al.: ISLES 2015-a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med. Image Anal. 35, 250–269 (2017)

    CrossRef  Google Scholar 

  13. Mlynash, M., Eyngorn, I., Bammer, R., Moseley, M., Tong, D.C.: Automated method for generating the arterial input function on perfusion-weighted MR imaging: validation in patients with stroke. Am. J. Neuroradiol. 26(6), 1479–1486 (2005)

    Google Scholar 

  14. Mouridsen, K., Christensen, S., Gyldensted, L., Østergaard, L.: Automatic selection of arterial input function using cluster analysis. Magn. Reson. Med.: Off. J. Int. Soc. Magn. Reson. Med. 55(3), 524–531 (2006)

    CrossRef  Google Scholar 

  15. Murase, K., Kikuchi, K., Miki, H., Shimizu, T., Ikezoe, J.: Determination of arterial input function using fuzzy clustering for quantification of cerebral blood flow with dynamic susceptibility contrast-enhanced mr imaging. J. Magn. Reson. Imaging: Off. J. Int. Soc. Magn. Reson. Med. 13(5), 797–806 (2001)

    CrossRef  Google Scholar 

  16. Murphy, B., Chen, X., Lee, T.Y.: Serial changes in CT cerebral blood volume and flow after 4 hours of middle cerebral occlusion in an animal model of embolic cerebral ischemia. Am. J. Neuroradiol. 28(4), 743–749 (2007)

    Google Scholar 

  17. Papadopoulo, T., Lourakis, M.I.A.: Estimating the Jacobian of the singular value decomposition: theory and applications. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 554–570. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45054-8_36

    CrossRef  Google Scholar 

  18. Peruzzo, D., Bertoldo, A., Zanderigo, F., Cobelli, C.: Automatic selection of arterial input function on dynamic contrast-enhanced MR images. Comput. Methods Programs Biomed. 104(3), e148–e157 (2011)

    CrossRef  Google Scholar 

  19. Rausch, M., Scheffler, K., Rudin, M., Radü, E.: Analysis of input functions from different arterial branches with gamma variate functions and cluster analysis for quantitative blood volume measurements. Magn. Reson. Imaging 18(10), 1235–1243 (2000)

    CrossRef  Google Scholar 

  20. Robben, D., Suetens, P.: Perfusion parameter estimation using neural networks and data augmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 439–446. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_44

    CrossRef  Google Scholar 

  21. Shi, L., et al.: Automatic detection of arterial input function in dynamic contrast enhanced MRI based on affinity propagation clustering. J. Magn. Reson. Imaging 39(5), 1327–1337 (2014)

    CrossRef  Google Scholar 

  22. Sourbron, S., Luypaert, R., Morhard, D., Seelos, K., Reiser, M., Peller, M.: Deconvolution of bolus-tracking data: a comparison of discretization methods. Phys. Med. Biol. 52(22), 6761 (2007)

    CrossRef  Google Scholar 

  23. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Townsend, J.: Differentiating the singular value decomposition. Technical Report 2016 (2016). https://j-towns.github.io/papers/svd-derivative

  25. Vagal, A., et al.: Automated CT perfusion imaging for acute ischemic stroke: pearls and pitfalls for real-world use. Neurology 93(20), 888–898 (2019)

    Google Scholar 

Download references

Acknowledgements

This project received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement TRABIT No 765148. EDLR, DR and DMS are employees of icometrix. DR is supported by an innovation mandate of Flanders Innovation & Entrepreneurship (VLAIO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezequiel de la Rosa .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 108 KB)

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

de la Rosa, E., Robben, D., Sima, D.M., Kirschke, J.S., Menze, B. (2020). Differentiable Deconvolution for Improved Stroke Perfusion Analysis. In: , et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12267. Springer, Cham. https://doi.org/10.1007/978-3-030-59728-3_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59728-3_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59727-6

  • Online ISBN: 978-3-030-59728-3

  • eBook Packages: Computer ScienceComputer Science (R0)