Albers, G.W., et al.: Ischemic core and hypoperfusion volumes predict infarct size in SWIFT PRIME. Ann. Neurol. 79(1), 76–89 (2016)
CrossRef
Google Scholar
Bertels, J., Robben, D., Vandermeulen, D., Suetens, P.: Optimization with soft dice can lead to a volumetric bias. arXiv preprint arXiv:1911.02278 (2019)
Bland, J.M., Altman, D.: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327(8476), 307–310 (1986)
CrossRef
Google Scholar
Calamante, F.: Arterial input function in perfusion MRI: a comprehensive review. Progr. Nucl. Magn. Reson. Spectrosc. 74, 1–32 (2013)
CrossRef
Google Scholar
Cereda, C.W., et al.: A benchmarking tool to evaluate computer tomography perfusion infarct core predictions against a DWI standard. J. Cereb. Blood Flow Metab. 36(10), 1780–1789 (2016)
CrossRef
Google Scholar
Fan, S., et al.: An automatic estimation of arterial input function based on multi-stream 3d CNN. Front. Neuroinform. 13, 49 (2019)
CrossRef
Google Scholar
Fieselmann, A., Kowarschik, M., Ganguly, A., Hornegger, J., Fahrig, R.: Deconvolution-based CT and MR brain perfusion measurement: theoretical model revisited and practical implementation details. J. Biomed. Imaging 2011, 14 (2011)
Google Scholar
Ionescu, C., Vantzos, O., Sminchisescu, C.: Training deep networks with structured layers by matrix backpropagation. arXiv preprint arXiv:1509.07838 (2015)
Kistler, M., Bonaretti, S., Pfahrer, M., Niklaus, R., Büchler, P.: The virtual skeleton database: an open access repository for biomedical research and collaboration. J. Med. Internet Res. 15(11), e245 (2013)
CrossRef
Google Scholar
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Google Scholar
Lin, L., Bivard, A., Krishnamurthy, V., Levi, C.R., Parsons, M.W.: Whole-brain CT perfusion to quantify acute ischemic penumbra and core. Radiology 279(3), 876–887 (2016)
CrossRef
Google Scholar
Maier, O., et al.: ISLES 2015-a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med. Image Anal. 35, 250–269 (2017)
CrossRef
Google Scholar
Mlynash, M., Eyngorn, I., Bammer, R., Moseley, M., Tong, D.C.: Automated method for generating the arterial input function on perfusion-weighted MR imaging: validation in patients with stroke. Am. J. Neuroradiol. 26(6), 1479–1486 (2005)
Google Scholar
Mouridsen, K., Christensen, S., Gyldensted, L., Østergaard, L.: Automatic selection of arterial input function using cluster analysis. Magn. Reson. Med.: Off. J. Int. Soc. Magn. Reson. Med. 55(3), 524–531 (2006)
CrossRef
Google Scholar
Murase, K., Kikuchi, K., Miki, H., Shimizu, T., Ikezoe, J.: Determination of arterial input function using fuzzy clustering for quantification of cerebral blood flow with dynamic susceptibility contrast-enhanced mr imaging. J. Magn. Reson. Imaging: Off. J. Int. Soc. Magn. Reson. Med. 13(5), 797–806 (2001)
CrossRef
Google Scholar
Murphy, B., Chen, X., Lee, T.Y.: Serial changes in CT cerebral blood volume and flow after 4 hours of middle cerebral occlusion in an animal model of embolic cerebral ischemia. Am. J. Neuroradiol. 28(4), 743–749 (2007)
Google Scholar
Papadopoulo, T., Lourakis, M.I.A.: Estimating the Jacobian of the singular value decomposition: theory and applications. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 554–570. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45054-8_36
CrossRef
Google Scholar
Peruzzo, D., Bertoldo, A., Zanderigo, F., Cobelli, C.: Automatic selection of arterial input function on dynamic contrast-enhanced MR images. Comput. Methods Programs Biomed. 104(3), e148–e157 (2011)
CrossRef
Google Scholar
Rausch, M., Scheffler, K., Rudin, M., Radü, E.: Analysis of input functions from different arterial branches with gamma variate functions and cluster analysis for quantitative blood volume measurements. Magn. Reson. Imaging 18(10), 1235–1243 (2000)
CrossRef
Google Scholar
Robben, D., Suetens, P.: Perfusion parameter estimation using neural networks and data augmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 439–446. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_44
CrossRef
Google Scholar
Shi, L., et al.: Automatic detection of arterial input function in dynamic contrast enhanced MRI based on affinity propagation clustering. J. Magn. Reson. Imaging 39(5), 1327–1337 (2014)
CrossRef
Google Scholar
Sourbron, S., Luypaert, R., Morhard, D., Seelos, K., Reiser, M., Peller, M.: Deconvolution of bolus-tracking data: a comparison of discretization methods. Phys. Med. Biol. 52(22), 6761 (2007)
CrossRef
Google Scholar
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
MathSciNet
MATH
Google Scholar
Townsend, J.: Differentiating the singular value decomposition. Technical Report 2016 (2016). https://j-towns.github.io/papers/svd-derivative
Vagal, A., et al.: Automated CT perfusion imaging for acute ischemic stroke: pearls and pitfalls for real-world use. Neurology 93(20), 888–898 (2019)
Google Scholar