Skip to main content

Domain-Invariant Prior Knowledge Guided Attention Networks for Robust Skull Stripping of Developing Macaque Brains

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Non-human primates, especially macaque monkeys, with close phylogenetic relationship to humans, are highly valuable and widely used animal models for human neuroscience studies. In neuroimaging analysis of macaques, brain extraction or skull stripping of magnetic resonance imaging (MRI) is a crucial step for following processing. However, the current skull stripping methods largely focus on human brains, and thus often lead to unsatisfactory results when applying to macaque brains, especially for macaque brains during early development. In fact, the macaque brain during infancy undergoes regionally-heterogeneous dynamic development, leading to poor and age-variable contrasts between different anatomical structures, posing great challenges for accurate skull stripping. In this study, we propose a novel framework to effectively combine intensity information and domain-invariant prior knowledge, which are important guidance information for accurate brain extraction of developing macaques from 0 to 36 months of age. Specifically, we introduce signed distance map (SDM) and center of gravity distance map (CGDM) based on the intermediate segmentation results and fuse their information by Dual Self-Attention Module (DSAM) instead of local convolution. To evaluate the performance, we adopt two large-scale and challenging MRI datasets from rhesus macaques and cynomolgus macaques, respectively, with totally 361 scans from two different scanners with different imaging protocols. We perform cross-validation by using one dataset for training and the other one for testing. Experimental results show the robustness of our plug-and-play method on cross-source MRI datasets without any transfer learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xia, J., Wang, F., Wu, Z., et al.: Mapping hemispheric asymmetries of the macaque cerebral cortex during early brain development. Hum. Brain Mapp. 41(1), 95–106 (2020)

    Article  Google Scholar 

  2. Seidlitz, J., Sponheim, C., Glen, D., et al.: A population MRI brain template and analysis tools for the macaque. Neuroimage 170, 121–131 (2018)

    Article  Google Scholar 

  3. Wang, F., Lian, C., Xia, J., et al.: Construction of spatiotemporal infant cortical surface atlas of rhesus macaque. In: 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 704–707. IEEE (2018)

    Google Scholar 

  4. Young, J., Shi, Y., Niethammer, M., et al.: The UNC-Wisconsin rhesus macaque neurodevelopment database: a structural MRI and DTI database of early postnatal development. Front. Neurosci. 11, 29–29 (2017). https://www.nitrc.org/projects/uncuw_macdevmri

  5. Wang, L., Nie, D., Li, G., et al.: Benchmark on automatic six-month-old infant brain segmentation algorithms: the iSeg-2017 challenge. IEEE Trans. Med. Imaging 38(9), 2219–2230 (2019)

    Article  Google Scholar 

  6. Li, G., Wang, L., Yap, P., et al.: Computational neuroanatomy of baby brains: a review. NeuroImage 185, 906–925 (2019)

    Article  Google Scholar 

  7. Zhao, F., et al.: Harmonization of infant cortical thickness using surface-to-surface cycle-consistent adversarial networks. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 475–483. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_52

    Chapter  Google Scholar 

  8. Dubois, J., Lefèvre, J., Angleys, H., et al.: The dynamics of cortical folding waves and prematurity-related deviations revealed by spatial and spectral analysis of gyrification. Neuroimage 185, 934–946 (2019)

    Article  Google Scholar 

  9. Smith, S.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143–155 (2002)

    Article  Google Scholar 

  10. Shattuck, D., Sandor-Leahy, S., Schaper, K., et al.: Magnetic resonance image tissue classification using a partial volume model. NeuroImage 13(5), 856–876 (2001)

    Article  Google Scholar 

  11. Wang, Y., Nie, J., Yap, P., et al.: Knowledge-guided robust MRI brain extraction for diverse large-scale neuroimaging studies on humans and non-human primates. PLoS ONE 9(1), e77810 (2014)

    Article  Google Scholar 

  12. Liang, S., et al.: Deep-learning-based detection and segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning. Eur. Radiol. 29(4), 1961–1967 (2018). https://doi.org/10.1007/s00330-018-5748-9

    Article  Google Scholar 

  13. Zhong, T., Huang, X., Tang, F., et al.: Boosting-based cascaded convolutional neural networks for the segmentation of CT organs-at-risk in nasopharyngeal carcinoma. Med. Phys. 46(12), 5602–5611 (2019)

    Article  Google Scholar 

  14. Tang, F., et al.: Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs. Eur. Radiol. 30(2), 823–832 (2019). https://doi.org/10.1007/s00330-019-06441-z

    Article  Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  16. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  17. Dolz, J., Gopinath, K., Yuan, J., et al.: HyperDense-Net: a hyper-densely connected CNN for multi-modal image segmentation. Eur. Radiol. 38(5), 1116–1126 (2018)

    Google Scholar 

  18. Wang, L., et al.: Volume-based analysis of 6-month-old infant brain MRI for autism biomarker identification and early diagnosis. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 411–419. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_47

    Chapter  Google Scholar 

  19. Fu, J., Liu, J., Tian, H., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2019), pp. 3146–3154. IEEE (2019)

    Google Scholar 

  20. Wang, X., Girshick, R., Gupta, R., et al.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2018), pp. 7794–7803. IEEE (2018)

    Google Scholar 

  21. Zhao, H., et al.: PSANet: point-wise spatial attention network for scene parsing. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 270–286. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_17

    Chapter  Google Scholar 

  22. Yushkevich, P., Piven, J., Hazlett, C., et al.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006). www.itksnap.org

  23. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), pp. 770–778. IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Zhang or Gang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhong, T. et al. (2020). Domain-Invariant Prior Knowledge Guided Attention Networks for Robust Skull Stripping of Developing Macaque Brains. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12267. Springer, Cham. https://doi.org/10.1007/978-3-030-59728-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59728-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59727-6

  • Online ISBN: 978-3-030-59728-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics