Skip to main content

Optimizing Visual Cortex Parameterization with Error-Tolerant Teichmüller Map in Retinotopic Mapping

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

The mapping between the visual input on the retina to the cortical surface, i.e., retinotopic mapping, is an important topic in vision science and neuroscience. Human retinotopic mapping can be revealed by analyzing cortex functional magnetic resonance imaging (fMRI) signals when the subject is under specific visual stimuli. Conventional methods process, smooth, and analyze the retinotopic mapping based on the parametrization of the (partial) cortical surface. However, the retinotopic maps generated by this approach frequently contradict neuropsychology results. To address this problem, we propose an integrated approach that parameterizes the cortical surface, such that the parametric coordinates linearly relates the visual coordinate. The proposed method helps the smoothing of noisy retinotopic maps and obtains neurophysiological insights in human vision systems. One key element of the approach is the Error-Tolerant Teichmüller Map, which uniforms the angle distortion and maximizes the alignments to self-contradicting landmarks. We validated our overall approach with synthetic and real retinotopic mapping datasets. The experimental results show the proposed approach is superior in accuracy and compatibility. Although we focus on retinotopic mapping, the proposed framework is general and can be applied to process other human sensory maps.

The work was supported in part by NIH (RF1AG051710 and R01EB025032) and Arizona Alzheimer Consortium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ogawa, S., Lee, T.M., Kay, A.R., Tank, D.W.: Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. U S A 87, 9868–9872 (1990). https://doi.org/10.1073/pnas.87.24.9868

    Article  Google Scholar 

  2. Ogawa, S., et al.: Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys. J. 64, 803–812 (1993). https://doi.org/10.1016/S0006-3495(93)81441-3

  3. Sato, T.K., Nauhaus, I., Carandini, M.: Traveling waves in visual cortex. Neuron 75, 218–229 (2012). https://doi.org/10.1016/j.neuron.2012.06.029

    Article  Google Scholar 

  4. Dumoulin, S.O., Wandell, B.A.: Population receptive field estimates in human visual cortex. Neuroimage 39, 647–660 (2008). https://doi.org/10.1016/j.neuroimage.2007.09.034

    Article  Google Scholar 

  5. Foss, A.J., et al.: Evaluation and development of a novel binocular treatment (I-BiTTM) system using video clips and interactive games to improve vision in children with amblyopia (‘lazy eye’): study protocol for a randomised controlled trial. Trials 14, 145 (2013). https://doi.org/10.1186/1745-6215-14-145

    Article  Google Scholar 

  6. Li, X., Dumoulin, S.O., Mansouri, B., Hess, R.F.: The fidelity of the cortical retinotopic map in human amblyopia. Eur. J. Neurosci. 25, 1265–1277 (2007). https://doi.org/10.1111/j.1460-9568.2007.05356.x

    Article  Google Scholar 

  7. Conner, I.P., Schwartz, T.L., Odom, J. V, Mendola, J.D.: Monocular retinotopic mapping in amblyopic adults. J. Vis. 3, 112–112 (2010). https://doi.org/10.1167/3.9.112

  8. Quinlan, E.M., Lukasiewicz, P.D.: Amblyopia: challenges and opportunities the Lasker/IRRF initiative for innovation in vision science. Vis. Neurosci. 35 (2018). https://doi.org/10.1017/s0952523817000384

  9. Glasser, M.F., et al.: A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016). https://doi.org/10.1038/nature18933

    Article  Google Scholar 

  10. Paulun, L., Wendt, A., Kasabov, N.: A retinotopic spiking neural network system for accurate recognition of moving objects using neucube and dynamic vision sensors. Front. Comput. Neurosci. 12, 42 (2018). https://doi.org/10.3389/fncom.2018.00042

    Article  Google Scholar 

  11. Qiu, A., Rosenau, B.J., Greenberg, A.S., Hurdal, M.K., Barta, P., Yantis, S., Miller, M.I.: Estimating linear cortical magnification in human primary visual cortex via dynamic programming. Neuroimage 31, 125–138 (2006). https://doi.org/10.1016/j.neuroimage.2005.11.049

    Article  Google Scholar 

  12. Benson, N.C., Winawer, J.: Bayesian analysis of retinotopic maps. Elife 7 (2018). https://doi.org/10.7554/eLife.40224

  13. Warnking, J., et al.: fMRI retinotopic mapping—step by Step. Neuroimage 17, 1665–1683 (2002). https://doi.org/10.1006/NIMG.2002.1304

    Article  Google Scholar 

  14. Schira, M.M., Tyler, C.W., Spehar, B., Breakspear, M.: Modeling magnification and anisotropy in the primate foveal confluence. PLoS Comput. Biol. 6, e1000651 (2010). https://doi.org/10.1371/journal.pcbi.1000651

    Article  MathSciNet  Google Scholar 

  15. Eilers, P.H.C.: A perfect smoother. Anal. Chem. 75, 3631–3636 (2003). https://doi.org/10.1021/ac034173t

    Article  Google Scholar 

  16. Barton, B., Venezia, J.H., Saberi, K., Hickok, G., Brewer, A.A.: Orthogonal acoustic dimensions define auditory field maps in human cortex. Proc. Natl. Acad. Sci. U S A 109, 20738–20743 (2012). https://doi.org/10.1073/pnas.1213381109

    Article  Google Scholar 

  17. Gardiner, F.P.: Quasiconformal Teichmüller theory. American Mathematical Society, Providence (2000)

    MATH  Google Scholar 

  18. Lam, K.C., Lui, L.M.: Landmark and intensity-based registration with large deformations via quasi-conformal maps. SIAM J. Imaging Sci. 7, 2364–2392 (2014). https://doi.org/10.1137/130943406

    Article  MathSciNet  MATH  Google Scholar 

  19. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2010). https://doi.org/10.1561/2200000016

    Article  MATH  Google Scholar 

  20. Benson, N.C., et al.: The HCP 7T retinotopy dataset: description and pRF analysis. bioRxiv 308247 (2018). https://doi.org/10.1101/308247

  21. Zeng, W., Gu, X.D.: Ricci Flow for Shape Analysis and Surface Registration. Theories, Algorithms and Applications. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-8781-4

  22. Lui, L.M., Lam, K.C., Wong, T.W., Gu, X.: Texture map and video compression using Beltrami representation. SIAM J. Imaging Sci. 6, 1880–1902 (2013). https://doi.org/10.1137/120866129

    Article  MathSciNet  MATH  Google Scholar 

  23. Schwartz, E.L.: Computational anatomy and functional architecture of striate cortex: a spatial mapping approach to perceptual coding. Vis. Res. 20, 645–669 (1980). https://doi.org/10.1016/0042-6989(80)90090-5

    Article  Google Scholar 

  24. Shi, R., et al.: Hyperbolic harmonic mapping for surface registration. IEEE Trans. Pattern Anal. Mach. Intell. 39, 965–980 (2017)

    Google Scholar 

  25. Su, Z., Zeng, W., Shi, R., Wang, Y., Sun, J., Gu, X.: Area preserving brain mapping. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2235–2242 (2013)

    Google Scholar 

  26. Balasubramanian, M., Polimeni, J.R., Schwartz, E.L.: Near-isometric flattening of brain surfaces. Neuroimage 51, 694–703 (2010). https://doi.org/10.1016/j.neuroimage.2010.02.008

    Article  Google Scholar 

  27. Mamassian, P., de Montalembert, M.: A simple model of the vertical-horizontal illusion. Vis. Res. 50, 956–962 (2010). https://doi.org/10.1016/j.visres.2010.03.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yalin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tu, Y., Ta, D., Lu, ZL., Wang, Y. (2020). Optimizing Visual Cortex Parameterization with Error-Tolerant Teichmüller Map in Retinotopic Mapping. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12267. Springer, Cham. https://doi.org/10.1007/978-3-030-59728-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59728-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59727-6

  • Online ISBN: 978-3-030-59728-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics