Skip to main content

Deep Active Learning for Effective Pulmonary Nodule Detection

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12266))

Abstract

Expensive and time-consuming medical imaging annotation is one of the big challenges for the deep learning-based computer-aided diagnosis (CAD) on the low-dose computed tomography (CT). To address this problem, we propose a novel active learning approach to improve the training efficiency for a deep network-based lung nodule detection framework as well as reduce the annotation cost. The informative CT scans, such as the samples that inconspicuous or likely to produce high false positives, are selected and further annotated for the nodule detector network training. A simple yet effective schema suggests the samples by ranking the uncertainty loss predicted by multi-layer feature maps and the Region of Interests (RoIs). The proposed framework is evaluated on a public dataset DeepLesion and achieves results that surpass the active learning baseline schema at all the training cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Budd, S., Robinson, E.C., Kainz, B.: A survey on active learning and human-in-the-loop deep learning for medical image analysis. arXiv preprint arXiv:1910.02923 (2019)

  2. Budd, S., et al.: Confident head circumference measurement from ultrasound with real-time feedback for sonographers. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 683–691. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_75

    Chapter  Google Scholar 

  3. Chen, X., Williams, B.M., Vallabhaneni, S.R., Czanner, G., Williams, R., Zheng, Y.: Learning active contour models for medical image segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11632–11640 (2019)

    Google Scholar 

  4. Gal, Y., Islam, R., Ghahramani, Z.: Deep Bayesian active learning with image data. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1183–1192. JMLR.org (2017)

    Google Scholar 

  5. Jing, L., Tian, Y.: Self-supervised visual feature learning with deep neural networks: a survey. arXiv preprint arXiv:1902.06162 (2019)

  6. Károly, A.I., Fullér, R., Galambos, P.: Unsupervised clustering for deep learning: a tutorial survey. Acta Polytech. Hung. 15(8), 29–53 (2018)

    Google Scholar 

  7. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  8. Liu, J., Cao, L., Akin, O., Tian, Y.: 3DFPN-HS\(^2\): 3D feature pyramid network based high sensitivity and specificity pulmonary nodule detection. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 513–521. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_57

    Chapter  Google Scholar 

  9. Lowell, D., Lipton, Z.C., Wallace, B.C.: Practical obstacles to deploying active learning. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 21–30 (2019)

    Google Scholar 

  10. Mahapatra, D., Bozorgtabar, B., Thiran, J.-P., Reyes, M.: Efficient active learning for image classification and segmentation using a sample selection and conditional generative adversarial network. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 580–588. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_65

    Chapter  Google Scholar 

  11. Nalisnik, M., Gutman, D.A., Kong, J., Cooper, L.A.: An interactive learning framework for scalable classification of pathology images. In: 2015 IEEE International Conference on Big Data (Big Data), pp. 928–935. IEEE (2015)

    Google Scholar 

  12. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2020. CA: A Cancer J. Clin. 70(1), 7–30 (2020)

    Google Scholar 

  13. Wang, K., Zhang, D., Li, Y., Zhang, R., Lin, L.: Cost-effective active learning for deep image classification. IEEE Trans. Circ. Syst. Video Technol. 27(12), 2591–2600 (2016)

    Article  Google Scholar 

  14. Wen, S., et al.: Comparison of different classifiers with active learning to support quality control in nucleus segmentation in pathology images. AMIA Summits on Transl. Sci. Proc. 2018, 227 (2018)

    Google Scholar 

  15. Wu, J., Qian, T.: A survey of pulmonary nodule detection, segmentation and classification in computed tomography with deep learning techniques. J. Med. Artif. Intell. 2, 2–8 (2019)

    Article  Google Scholar 

  16. Yan, K., Bagheri, M., Summers, R.M.: 3D context enhanced region-based convolutional neural network for end-to-end lesion detection. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 511–519. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_58

    Chapter  Google Scholar 

  17. Yan, K., Wang, X., Lu, L., Summers, R.M.: DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning. J. Med. Imaging 5(3), 036501 (2018)

    Article  Google Scholar 

  18. Yang, L., Zhang, Y., Chen, J., Zhang, S., Chen, D.Z.: Suggestive annotation: a deep active learning framework for biomedical image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 399–407. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_46

    Chapter  Google Scholar 

  19. Yoo, D., Kweon, I.S.: Learning loss for active learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 93–102 (2019)

    Google Scholar 

Download references

Acknowledgement

This material is based upon work supported by the National Science Foundation under award number IIS-1400802.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingli Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, J., Cao, L., Tian, Y. (2020). Deep Active Learning for Effective Pulmonary Nodule Detection. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12266. Springer, Cham. https://doi.org/10.1007/978-3-030-59725-2_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59725-2_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59724-5

  • Online ISBN: 978-3-030-59725-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics