Advertisement

Deep Active Learning for Effective Pulmonary Nodule Detection

Conference paper
  • 4k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12266)

Abstract

Expensive and time-consuming medical imaging annotation is one of the big challenges for the deep learning-based computer-aided diagnosis (CAD) on the low-dose computed tomography (CT). To address this problem, we propose a novel active learning approach to improve the training efficiency for a deep network-based lung nodule detection framework as well as reduce the annotation cost. The informative CT scans, such as the samples that inconspicuous or likely to produce high false positives, are selected and further annotated for the nodule detector network training. A simple yet effective schema suggests the samples by ranking the uncertainty loss predicted by multi-layer feature maps and the Region of Interests (RoIs). The proposed framework is evaluated on a public dataset DeepLesion and achieves results that surpass the active learning baseline schema at all the training cycles.

Keywords

Lung nodule detection Active learning Low-dose CT Deep learning 

Notes

Acknowledgement

This material is based upon work supported by the National Science Foundation under award number IIS-1400802.

References

  1. 1.
    Budd, S., Robinson, E.C., Kainz, B.: A survey on active learning and human-in-the-loop deep learning for medical image analysis. arXiv preprint arXiv:1910.02923 (2019)
  2. 2.
    Budd, S., et al.: Confident head circumference measurement from ultrasound with real-time feedback for sonographers. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 683–691. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-32251-9_75CrossRefGoogle Scholar
  3. 3.
    Chen, X., Williams, B.M., Vallabhaneni, S.R., Czanner, G., Williams, R., Zheng, Y.: Learning active contour models for medical image segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11632–11640 (2019)Google Scholar
  4. 4.
    Gal, Y., Islam, R., Ghahramani, Z.: Deep Bayesian active learning with image data. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1183–1192. JMLR.org (2017)Google Scholar
  5. 5.
    Jing, L., Tian, Y.: Self-supervised visual feature learning with deep neural networks: a survey. arXiv preprint arXiv:1902.06162 (2019)
  6. 6.
    Károly, A.I., Fullér, R., Galambos, P.: Unsupervised clustering for deep learning: a tutorial survey. Acta Polytech. Hung. 15(8), 29–53 (2018)Google Scholar
  7. 7.
    Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)Google Scholar
  8. 8.
    Liu, J., Cao, L., Akin, O., Tian, Y.: 3DFPN-HS\(^2\): 3D feature pyramid network based high sensitivity and specificity pulmonary nodule detection. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 513–521. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-32226-7_57CrossRefGoogle Scholar
  9. 9.
    Lowell, D., Lipton, Z.C., Wallace, B.C.: Practical obstacles to deploying active learning. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 21–30 (2019)Google Scholar
  10. 10.
    Mahapatra, D., Bozorgtabar, B., Thiran, J.-P., Reyes, M.: Efficient active learning for image classification and segmentation using a sample selection and conditional generative adversarial network. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 580–588. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00934-2_65CrossRefGoogle Scholar
  11. 11.
    Nalisnik, M., Gutman, D.A., Kong, J., Cooper, L.A.: An interactive learning framework for scalable classification of pathology images. In: 2015 IEEE International Conference on Big Data (Big Data), pp. 928–935. IEEE (2015)Google Scholar
  12. 12.
    Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2020. CA: A Cancer J. Clin. 70(1), 7–30 (2020)Google Scholar
  13. 13.
    Wang, K., Zhang, D., Li, Y., Zhang, R., Lin, L.: Cost-effective active learning for deep image classification. IEEE Trans. Circ. Syst. Video Technol. 27(12), 2591–2600 (2016)CrossRefGoogle Scholar
  14. 14.
    Wen, S., et al.: Comparison of different classifiers with active learning to support quality control in nucleus segmentation in pathology images. AMIA Summits on Transl. Sci. Proc. 2018, 227 (2018)Google Scholar
  15. 15.
    Wu, J., Qian, T.: A survey of pulmonary nodule detection, segmentation and classification in computed tomography with deep learning techniques. J. Med. Artif. Intell. 2, 2–8 (2019)CrossRefGoogle Scholar
  16. 16.
    Yan, K., Bagheri, M., Summers, R.M.: 3D context enhanced region-based convolutional neural network for end-to-end lesion detection. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 511–519. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00928-1_58CrossRefGoogle Scholar
  17. 17.
    Yan, K., Wang, X., Lu, L., Summers, R.M.: DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning. J. Med. Imaging 5(3), 036501 (2018)CrossRefGoogle Scholar
  18. 18.
    Yang, L., Zhang, Y., Chen, J., Zhang, S., Chen, D.Z.: Suggestive annotation: a deep active learning framework for biomedical image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 399–407. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66179-7_46CrossRefGoogle Scholar
  19. 19.
    Yoo, D., Kweon, I.S.: Learning loss for active learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 93–102 (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.The City College of New YorkNew YorkUSA
  2. 2.UMass CICSAmherstUSA
  3. 3.Google Inc.New YorkUSA

Personalised recommendations