Bae, W., Lee, S., Park, G., Park, H., Jung, K.H.: Residual CNN-based image super-resolution for CT slice thickness reduction using paired CT scans: preliminary validation study (2018)
Google Scholar
Chen, Y., Shi, F., Christodoulou, A.G., Xie, Y., Zhou, Z., Li, D.: Efficient and accurate MRI super-resolution using a generative adversarial network and 3D multi-level densely connected network. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 91–99. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_11
CrossRef
Google Scholar
Chen, Y., Xie, Y., Zhou, Z., Shi, F., Christodoulou, A.G., Li, D.: Brain MRI super resolution using 3D deep densely connected neural networks. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 739–742. IEEE (2018)
Google Scholar
Clark, T.J., Flood, T.F., Maximin, S.T., Sachs, P.B.: Lung CT screening reporting and data system speed and accuracy are increased with the use of a semiautomated computer application. J. Am. Coll. Radiol. 12(12), 1301–1306 (2015)
CrossRef
Google Scholar
Cristiano, R., Daniela, O., Massimo, B.: Low-dose CT: technique, reading methods and image interpretation. Cancer Imaging Official Publ. Int. Cancer Imaging Soc. 12(3), 548–556 (2012)
Google Scholar
Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13
CrossRef
Google Scholar
Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_25
CrossRef
Google Scholar
Ge, R., Yang, G., Xu, C., Chen, Y., Luo, L., Li, S.: Stereo-correlation and noise-distribution aware ResVoxGAN for dense slices reconstruction and noise reduction in thick low-dose CT. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 328–338. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_37
CrossRef
Google Scholar
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
Google Scholar
Gu, J., Lu, H., Zuo, W., Dong, C.: Blind super-resolution with iterative kernel correction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1604–1613 (2019)
Google Scholar
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5767–5777 (2017)
Google Scholar
Iwano, S., Makino, N., Ikeda, M., Itoh, S., Ishigaki, T.: Solitary pulmonary nodules: optimal slice thickness of high-resolution CT in differentiating malignant from benign. Clin. Imaging 28(5), 322–328 (2004)
CrossRef
Google Scholar
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
CrossRef
Google Scholar
Kudo, A., Kitamura, Y., Li, Y., Iizuka, S., Simo-Serra, E.: Virtual thin slice: 3D conditional GAN-based super-resolution for CT slice interval. In: Knoll, F., Maier, A., Rueckert, D., Ye, J.C. (eds.) MLMIR 2019. LNCS, vol. 11905, pp. 91–100. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33843-5_9
CrossRef
Google Scholar
Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)
Google Scholar
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Google Scholar
Macmahon, H., et al.: Guidelines for management of incidental pulmonary nodules detected on CT images: from the fleischner society 2017. Radiology 284, 228–243 (2017). 161659
CrossRef
Google Scholar
Mahapatra, D., Bozorgtabar, B., Garnavi, R.: Image super-resolution using progressive generative adversarial networks for medical image analysis. Comput. Med. Imaging Graph. 71, 30–39 (2019)
CrossRef
Google Scholar
Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)
Google Scholar
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)
MathSciNet
CrossRef
Google Scholar
Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)
Google Scholar
Silpa, K., Mastani, S.A.: Comparison of image quality metrics. Int. J. Eng. Res. Technol. (IJERT) 1(4), 5 (2012)
Google Scholar