Skip to main content

Learning Guided Electron Microscopy with Active Acquisition

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Single-beam scanning electron microscopes (SEM) are widely used to acquire massive datasets for biomedical study, material analysis, and fabrication inspection. Datasets are typically acquired with uniform acquisition: applying the electron beam with the same power and duration to all image pixels, even if there is great variety in the pixels’ importance for eventual use. Many SEMs are now able to move the beam to any pixel in the field of view without delay, enabling them, in principle, to invest their time budget more effectively with non-uniform imaging.

In this paper, we show how to use deep learning to accelerate and optimize single-beam SEM acquisition of images. Our algorithm rapidly collects an information-lossy image (e.g. low resolution) and then applies a novel learning method to identify a small subset of pixels to be collected at higher resolution based on a trade-off between the saliency and spatial diversity. We demonstrate the efficacy of this novel technique for active acquisition by speeding up the task of collecting connectomic datasets for neurobiology by up to an order of magnitude. Code is available at https://github.com/lumi9587/learning-guided-SEM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, H.S., Ilic-Helms, J., Rohrer, B., Wheeler, J., Larson, K.: Sparse imaging for fast electron microscopy. In: Computational Imaging XI, vol. 8657, p. 86570C. International Society for Optics and Photonics (2013)

    Google Scholar 

  2. Buchholz, T.O., Krull, A., Shahidi, R., Pigino, G., Jékely, G., Jug, F.: Content-aware image restoration for electron microscopy. Meth. Cell Biol. 152, 277–289 (2019)

    Article  Google Scholar 

  3. Dahmen, T.: Feature adaptive sampling for scanning electron microscopy. Sci. Rep. 6, 25350 (2016)

    Article  Google Scholar 

  4. Eberle, A., Mikula, S., Schalek, R., Lichtman, J., Tate, M.K., Zeidler, D.: High-resolution, high-throughput imaging with a multibeam scanning electron microscope. J. Micros. 259(2), 114–120 (2015)

    Article  Google Scholar 

  5. Eldar, Y.C., Kutyniok, G.: Compressed Sensing: Theory and Applications. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  6. Fang, L., et al.: Deep learning-based point-scanning super-resolution imaging. bioRxiv, p. 740548 (2019)

    Google Scholar 

  7. Flegler, S.L., Flegler, S.L.: Scanning & Transmission Electron Microscopy. Oxford University Press, Oxford (1997)

    Google Scholar 

  8. Gan, L.: Block compressed sensing of natural images. In: 2007 15th International Conference on Digital Signal Processing, pp. 403–406. IEEE (2007)

    Google Scholar 

  9. Helmstaedter, M., Briggman, K.L., Denk, W.: High-accuracy neurite reconstruction for high-throughput neuroanatomy. Nat. Neurosci. 14(8), 1081–1088 (2011)

    Article  Google Scholar 

  10. Ilg, E.: Uncertainty estimates and multi-hypotheses networks for optical flow. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 677–693. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_40

    Chapter  Google Scholar 

  11. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  12. Januszewski, M.: High-precision automated reconstruction of neurons with flood-filling networks. Nat. Meth. 15, 605–610 (2018)

    Article  Google Scholar 

  13. Jarrell, T.A.: The connectome of a decision-making neural network. Science 337(6093), 437–444 (2012)

    Article  Google Scholar 

  14. Kasthuri, N., et al.: Saturated reconstruction of a volume of neocortex. Cell 162(3), 648–661 (2015)

    Article  Google Scholar 

  15. Kulesza, A., Taskar, B., et al.: Determinantal point processes for machine learning. Found. Trends Mach. Learn. 5(2–3), 123–286 (2012)

    Article  Google Scholar 

  16. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)

    Google Scholar 

  17. Lichtman, J.W., Pfister, H., Shavit, N.: The big data challenges of connectomics. Nat. Neurosci. 17(11), 1448–1454 (2014)

    Article  Google Scholar 

  18. Meirovitch, Y., Mi, L., Saribekyan, H., Matveev, A., Rolnick, D., Shavit, N.: Cross-classification clustering: an efficient multi-object tracking technique for 3-D instance segmentation in connectomics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8425–8435 (2019)

    Google Scholar 

  19. Mi, L., Wang, H., Tian, Y., Shavit, N.: Training-free uncertainty estimation for neural networks. arXiv preprint arXiv:1910.04858 (2019)

  20. Mohammed, A.: Scanning electron microscopy (SEM): a review (2018)

    Google Scholar 

  21. Newell, T., Tillotson, B., Pearl, H., Miller, A.: Detection of electrical defects with semvision in semiconductor production mode manufacturing. In: 2016 27th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), pp. 151–156. IEEE (2016)

    Google Scholar 

  22. Pandey, K., Setua, D., Mathur, G.: Material behaviour: fracture topography of rubber surfaces: an SEM study. Polym. Testing 22(3), 353–359 (2003)

    Article  Google Scholar 

  23. Potocek, P., Trampert, P., Peemen, M., Schoenmakers, R., Dahmen, T.: Sparse scanning electron microscopy data acquisition and deep neural networks for automated segmentation in connectomics. Microsc. Microanal. 26, 403–412 (2020)

    Article  Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  25. Thorpe, S., Fize, D., Marlot, C.: Speed of processing in the human visual system. Nature 381(6582), 520 (1996)

    Article  Google Scholar 

  26. Wang, G., Li, W., Aertsen, M., Deprest, J., Ourselin, S., Vercauteren, T.: Test-time augmentation with uncertainty estimation for deep learning-based medical image segmentation. arXiv preprint arXiv:1807.07356 (2018)

  27. Wang, H., et al.: Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nat. Meth. 16, 103–110 (2019)

    Article  Google Scholar 

  28. Weigert, M., et al.: Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. Meth. 15(12), 1090 (2018)

    Article  Google Scholar 

  29. Yan, G., et al.: Network control principles predict neuron function in the caenorhabditis elegans connectome. Nature 550(7677), 519 (2017)

    Article  Google Scholar 

Download references

Acknowledgement

We would like to thank Remco Schoenmakers and Pengfei Guo for insightful comments and suggestions. This research was supported by the National Science Foundation (NSF) under grants IIS-1607189, CCF-1563880, IOS-1452593 and NSF 1806818.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Mi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 747 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mi, L. et al. (2020). Learning Guided Electron Microscopy with Active Acquisition. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12265. Springer, Cham. https://doi.org/10.1007/978-3-030-59722-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59722-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59721-4

  • Online ISBN: 978-3-030-59722-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics