Skip to main content

DISCo: Deep Learning, Instance Segmentation, and Correlations for Cell Segmentation in Calcium Imaging

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Calcium imaging is one of the most important tools in neurophysiology as it enables the observation of neuronal activity for hundreds of cells in parallel and at single-cell resolution. In order to use the data gained with calcium imaging, it is necessary to extract individual cells and their activity from the recordings. We present DISCo, a novel approach for the cell segmentation in calcium imaging videos. We use temporal information from the recordings in a computationally efficient way by computing correlations between pixels and combine it with shape-based information to identify active as well as non-active cells. We first learn to predict whether two pixels belong to the same cell; this information is summarized in an undirected, edge-weighted graph which we then partition. Evaluating our method on the Neurofinder public benchmark shows that DISCo outperforms all existing models trained on these datasets.

E. Kirschbaum—This work was done while E.K. was at 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/EKirschbaum/DISCo.

  2. 2.

    We used the U-Net implementation provided in Inferno 0.3.0 with depth five, see https://github.com/inferno-pytorch/inferno.

  3. 3.

    Leaderboard of the Neurofinder challenge at http://neurofinder.codeneuro.org. Accessed: 2020-03-05. We do not discuss the submissions Mask R-CNN and human-label since we have no information on the used models and training procedures.

References

  1. Bailoni, A., Pape, C., Wolf, S., Beier, T., Kreshuk, A., Hamprecht, F.A.: A generalized framework for agglomerative clustering of signed graphs applied to instance segmentation. arXiv preprint (2019)

    Google Scholar 

  2. CodeNeuro: neurofinder public benchmark (2016). http://neurofinder.codeneuro.org. Accessed 05 Mar 2020

  3. Denk, W., Strickler, J.H., Webb, W.W.: Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990)

    Google Scholar 

  4. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945)

    Google Scholar 

  5. Diego, F., Hamprecht, F.A.: Learning multi-level sparse representations. In: NIPS (2013)

    Google Scholar 

  6. Diego, F., Hamprecht, F.A.: Sparse space-time deconvolution for calcium image analysis. In: NIPS (2014)

    Google Scholar 

  7. Diego, F., Reichinnek, S., Both, M., Hamprecht, F.A.: Automated identification of neuronal activity from calcium imaging by sparse dictionary learning. In: IEEE International Symposium on Biomedical Imaging (ISBI) (2013)

    Google Scholar 

  8. Flusberg, B.A., et al.: High-speed, miniaturized fluorescence microscopy in freely moving mice. Nat. Methods (2008)

    Google Scholar 

  9. Friedrich, J., Zhou, P., Paninski, L.: Fast online deconvolution of calcium imaging data. PLoS Comput. Biol. 13, e1005423 (2017)

    Google Scholar 

  10. Gao, S.: Conv2D (2016). https://github.com/iamshang1/Projects/tree/master/Advanced_ML/Neuron_Detection. Accessed 19 Jul 2019

  11. Giovannucci, A., et al.: Caiman an open source tool for scalable calcium imaging data analysis. eLife 8, e38173 (2019)

    Google Scholar 

  12. Giovannucci, A., et al.: Onacid: online analysis of calcium imaging data in real time. In: NIPS (2017)

    Google Scholar 

  13. Helmchen, F., Denk, W.: Deep tissue two-photon microscopy. Nat. Methods (2005)

    Google Scholar 

  14. Kaifosh, P., Zaremba, J.D., Danielson, N.B., Losonczy, A.: SIMA: python software for analysis of dynamic fluorescence imaging data. Front. Neuroinform. 8, 80 (2014)

    Google Scholar 

  15. Keuper, M., Levinkov, E., Bonneel, N., Lavoué, G., Brox, T., Andres, B.: Efficient decomposition of image and mesh graphs by lifted multicuts. In: IEEE International Conference on Computer Vision (ICCV), Proceedings (2015)

    Google Scholar 

  16. Kirschbaum, E., et al.: LeMoNADe: learned motif and neuronal assembly detection in calcium imaging videos. In: International Conference on Learning Representations (ICLR), Proceedings (2018)

    Google Scholar 

  17. Klibisz, A., Rose, D., Eicholtz, M., Blundon, J., Zakharenko, S.: Fast, simple calcium imaging segmentation with fully convolutional networks. In: International Workshop on Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support (DLMIA and ML-CDS), held in conjunction with MICCAI (2017)

    Google Scholar 

  18. Levinkov, E., Kirillov, A., Andres, B.: A comparative study of local search algorithms for correlation clustering. In: Roth, V., Vetter, T. (eds.) GCPR 2017. LNCS, vol. 10496, pp. 103–114. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66709-6_9

    Chapter  Google Scholar 

  19. Nikolić, D., Mureşan, R.C., Feng, W., Singer, W.: Scaled correlation analysis: a better way to compute a cross-correlogram. Eur. J. Neurosci. 35, 742–762 (2012)

    Google Scholar 

  20. Pachitariu, M., Packer, A.M., Pettit, N., Dalgleish, H., Hausser, M., Sahani, M.: Extracting regions of interest from biological images with convolutional sparse block coding. In: NIPS (2013)

    Google Scholar 

  21. Pachitariu, M., et al.: Suite2p: beyond 10,000 neurons with standard two-photon microscopy. bioRxiv preprint (2017)

    Google Scholar 

  22. Pearson, K.: Notes on regression and inheritance in the case of two parents. Proc. Roy. Soc. Lond. 58, 240–242 (1895)

    Google Scholar 

  23. Petersen, A., Simon, N., Witten, D.: Scalpel: extracting neurons from calcium imaging data. Ann. Appl. Stat. 12, 2430 (2018)

    Google Scholar 

  24. Pnevmatikakis, E.A., et al.: A structured matrix factorization framework for large scale calcium imaging data analysis. arXiv preprint (2014)

    Google Scholar 

  25. Pnevmatikakis, E.A., Paninski, L.: Sparse nonnegative deconvolution for compressive calcium imaging: algorithms and phase transitions. In: NIPS (2013)

    Google Scholar 

  26. Pnevmatikakis, E.A., et al.: Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron 89, 285–299 (2016)

    Google Scholar 

  27. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  28. Soltanian-Zadeh, S., Sahingur, K., Blau, S., Gong, Y., Farsiu, S.: Fast and robust active neuron segmentation in two-photon calcium imaging using spatiotemporal deep learning. Proc. Natl. Acad. Sci. 116, 8554–8563 (2019)

    Google Scholar 

  29. Sørensen, T.J.: A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on danish commons. Biol. Skar 5, 1–34 (1948)

    Google Scholar 

  30. Spaen, Q., Asín-Achá, R., Chettih, S.N., Minderer, M., Harvey, C., Hochbaum, D.S.: HNCcorr: a novel combinatorial approach for cell identification in calcium-imaging movies. eNeuro (2019)

    Google Scholar 

  31. Székely, G.J., Rizzo, M.L., Bakirov, N.K.: Measuring and testing dependence by correlation of distances. Ann. Stat. 35, 2769–2794 (2007)

    Google Scholar 

  32. Wolf, S., et al.: The mutex watershed: efficient, parameter-free image partitioning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 571–587. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_34

    Chapter  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge partial financial support by DFG SFB 1134 Functional Ensembles and DFG HA 4364/9-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke Kirschbaum .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3169 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kirschbaum, E., Bailoni, A., Hamprecht, F.A. (2020). DISCo: Deep Learning, Instance Segmentation, and Correlations for Cell Segmentation in Calcium Imaging. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12265. Springer, Cham. https://doi.org/10.1007/978-3-030-59722-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59722-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59721-4

  • Online ISBN: 978-3-030-59722-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics