Skip to main content

Segmenting Continuous but Sparsely-Labeled Structures in Super-Resolution Microscopy Using Perceptual Grouping

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12265))

  • 9157 Accesses

Abstract

Super Resolution (SR) microscopy leverages a variety of optical and computational techniques for overcoming the optical diffraction limit to acquire additional spatial details. However, added spatial details challenge existing segmentation tools. Confounding features include protein distributions that form membranes and boundaries, such as cellular and nuclear surfaces. We present a segmentation pipeline that retains the benefits provided by SR in surface separation while providing a tensor field to overcome these confounding features. The proposed technique leverages perceptual grouping to generate a tensor field that enables robust evolution of active contours despite ill-defined membrane boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Kofahi, Y., Lassoued, W., Lee, W., Roysam, B.: Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE Trans. Biomed. Eng. 57(4), 841–852 (2010)

    Article  Google Scholar 

  2. Artur, C., Womack, T., Eriksen, J.L.J., Mayerich, D., Shih, W.C.: Hyperspectral expansion microscopy. In: 2017 IEEE Photonics Conference (IPC), pp. 23–24, October 2017

    Google Scholar 

  3. Beucher, S.: Watershed, hierarchical segmentation and waterfall algorithm. In: Serra, J., Soille, P. (eds.) Mathematical Morphology and Its Applications to Image Processing. Computational Imaging and Vision, vol. 2, pp. 69–76. Springer, Dordrecht (1994). https://doi.org/10.1007/978-94-011-1040-2_10

    Chapter  Google Scholar 

  4. Chan, T.F., Shen, J., Vese, L.: Variational PDE models in image processing. Not. AMS 50(1), 14–26 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Chen, F., Tillberg, P.W., Boyden, E.S.: Expansion microscopy. Science 347(6221), 543–548 (2015)

    Article  Google Scholar 

  6. Guy, G., Medioni, G.: Inferring global perceptual contours from local features. Int. J. Comput. Vis. 20(1), 113–133 (1996). https://doi.org/10.1007/BF00144119

    Article  Google Scholar 

  7. Heintzmann, R., Huser, T.: Super-resolution structured illumination microscopy. Chem. Rev. 117(23), 13890–13908 (2017)

    Article  Google Scholar 

  8. Huang, B., Babcock, H., Zhuang, X.: Breaking the diffraction barrier: super-resolution imaging of cells. Cell 7(143), 1047–1058 (2010)

    Article  Google Scholar 

  9. Huang, B., Bates, M., Zhuang, X.: Super resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016 (2009)

    Article  Google Scholar 

  10. Jörgens, D., Moreno, R.: Tensor voting: current state, challenges and new trends in the context of medical image analysis. In: Hotz, I., Schultz, T. (eds.) Visualization and Processing of Higher Order Descriptors for Multi-Valued Data. MV, pp. 163–187. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15090-1_9

    Chapter  MATH  Google Scholar 

  11. Li, C., Xu, C., Gui, C., Fox, M.D.: Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Process. 19(12), 3243–3254 (2010)

    Article  MathSciNet  Google Scholar 

  12. Loss, L., Bebis, G., Nicolescu, M., Skurikhin, A.: An iterative multi-scale tensor voting scheme for perceptual grouping of natural shapes in cluttered backgrounds. Comput. Vis. Image Underst. 113(1), 126–149 (2009)

    Article  Google Scholar 

  13. Lou, X., Kang, M., Xenopoulos, P., Muñoz-Descalzo, S., Hadjantonakis, A.K.: A rapid and efficient 2D/3D nuclear segmentation method for analysis of early mouse embryo and stem cell image data. Stem Cell Rep. 2(3), 382–397 (2014)

    Article  Google Scholar 

  14. Lu, H., et al.: TIMING 2.0: high-throughput single-cell profiling of dynamic cell-cell interactions by time-lapse imaging microscopy in nanowell grids. Bioinformatics 35, 706–708 (2018)

    Article  Google Scholar 

  15. Luo, J., Guo, C.E.: Perceptual grouping of segmented regions in color images. Pattern Recogn. 36(12), 2781–2792 (2003)

    Article  Google Scholar 

  16. Mordohai, P., Medioni, G.: Tensor voting: a perceptual organization approach to computer vision and machine learning. 2(1), 1–136 (2006). Morgan & Claypool Publishers

    Google Scholar 

  17. Moreno, R., Garcia, M.A., Puig, D., Julià, C.: On adapting the tensor voting framework to robust color image denoising. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp. 492–500. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03767-2_60

    Chapter  Google Scholar 

  18. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces, vol. 153. Springer, Heidelberg (2006). https://doi.org/10.1007/b98879

    Book  MATH  Google Scholar 

  19. Rust, M.J., Bates, M., Zhuang, X.: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3(10), 793–796 (2006)

    Article  Google Scholar 

  20. Saadatifard, L., Abbott, L.C., Montier, L., Ziburkus, J., Mayerich, D.: Robust cell detection for large-scale 3D microscopy using GPU-accelerated iterative voting. Front. Neuroanat. 12, 28 (2018)

    Article  Google Scholar 

  21. Sahir, S.: Canny Edge Detection Step by Step in Python - Computer Vision, January 2019

    Google Scholar 

  22. Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, vol. 3. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  23. Shen, J., Jin, X., Zhou, C., Wang, C.C.L.: Gradient based image completion by solving the Poisson equation. Comput. Graph. 31, 119–126 (2007)

    Article  Google Scholar 

  24. Shtengel, G., et al.: Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc. Nat. Acad. Sci. 106(9), 3125–3130 (2009)

    Article  Google Scholar 

  25. Vicidomini, G., Bianchini, P., Diaspro, A.: STED Super-resolved microscopy. Nat. Methods 15(3), 173–182 (2018)

    Article  Google Scholar 

  26. Willett, R.M., Harmany, Z.T., Marcia, R.F.: Poisson image reconstruction with total variation regularization. In: 2010 IEEE International Conference on Image Processing, pp. 4177–4180, September 2010. https://doi.org/10.1109/ICIP.2010.5649600

Download references

Acknowledgement

This work is funded in part by the National Institutes of Health/National Heart, Lung, and Blood Institute (NHLBI) #R01HL146745, the Cancer Prevention and Research Institute of Texas (CPRIT) #RR140013, the National Science Foundation I/UCRC BRAIN Center #1650566, and the National Institutes of Health Training Grant #T15LM007093.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiabing Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Artur, C., Eriksen, J., Roysam, B., Mayerich, D. (2020). Segmenting Continuous but Sparsely-Labeled Structures in Super-Resolution Microscopy Using Perceptual Grouping. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12265. Springer, Cham. https://doi.org/10.1007/978-3-030-59722-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59722-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59721-4

  • Online ISBN: 978-3-030-59722-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics