Advertisement

Automated Detection of Cortical Lesions in Multiple Sclerosis Patients with 7T MRI

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12264)

Abstract

The automated detection of cortical lesions (CLs) in patients with multiple sclerosis (MS) is a challenging task that, despite its clinical relevance, has received very little attention. Accurate detection of the small and scarce lesions requires specialized sequences and high or ultra-high field MRI. For supervised training based on multimodal structural MRI at 7T, two experts generated ground truth segmentation masks of 60 patients with 2014 CLs. We implemented a simplified 3D U-Net with three resolution levels (3D U-Net-). By increasing the complexity of the task (adding brain tissue segmentation), while randomly dropping input channels during training, we improved the performance compared to the baseline. Considering a minimum lesion size of 0.75 \(\upmu \)L, we achieved a lesion-wise cortical lesion detection rate of 67% and a false positive rate of 42%. However, 393 (24%) of the lesions reported as false positives were post-hoc confirmed as potential or definite lesions by an expert. This indicates the potential of the proposed method to support experts in the tedious process of CL manual segmentation.

Keywords

MRI Ultra-high field Multiple sclerosis Cortical lesions Segmentation CNN 

Notes

Acknowledgments

This project is supported by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie project TRABIT (agreement No 765148), the Centre d\('\)Imagerie BioMédicale of the University of Lausanne, the Swiss Federal Institute of Technology Lausanne, the University of Geneva, the Centre Hospitalier Universitaire Vaudois, and the Hôpitaux Universitaires de Genève. Erin S Beck is supported by a Career Transition Fellowship from the National Multiple Sclerosis Society. Pascal Sati, Erin S Beck, and Daniel S Reich are supported by the Intramural Research Program of the National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA. Ahmed Abdulkadir is supported by the Swiss National Science Foundation grant SNSF 173880.

References

  1. 1.
    Avants, B.B., Tustison, N., Song, G.: Advanced normalization tools (ANTS). Insight J 2(365), 1–35 (2009)Google Scholar
  2. 2.
    Beck, E.S., et al.: Improved visualization of cortical lesions in multiple sclerosis using 7T MP2RAGE. Am. J. Neuroradiol. 39(3), 459–466 (2018)CrossRefGoogle Scholar
  3. 3.
    Calabrese, M., Filippi, M., Gallo, P.: Cortical lesions in multiple sclerosis. Nat. Rev. Neurol. 6(8), 438 (2010)CrossRefGoogle Scholar
  4. 4.
    Carass, A., et al.: Longitudinal multiple sclerosis lesion segmentation: resource and challenge. NeuroImage 148, 77–102 (2017)CrossRefGoogle Scholar
  5. 5.
    Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46723-8_49CrossRefGoogle Scholar
  6. 6.
    Dorent, R., Li, W., Ekanayake, J., Ourselin, S., Vercauteren, T.: Learning joint lesion and tissue segmentation from task-specific hetero-modal datasets. arXiv preprint arXiv:1907.03327 (2019)
  7. 7.
    Fartaria, M.J., et al.: Automated detection of white matter and cortical lesions in early stages of multiple sclerosis. J. Magn. Reson. Imaging 43(6), 1445–1454 (2016)CrossRefGoogle Scholar
  8. 8.
    Fartaria, M.J., Roche, A., Meuli, R., Granziera, C., Kober, T., Bach Cuadra, M.: Segmentation of cortical and subcortical multiple sclerosis lesions based on constrained partial volume modeling. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 142–149. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66179-7_17CrossRefGoogle Scholar
  9. 9.
    Fartaria, M.J., et al.: Automated detection and segmentation of multiple sclerosis lesions using ultra-high-field MP2RAGE. Invest. Radiol. 54(6), 356–364 (2019)CrossRefGoogle Scholar
  10. 10.
    García-Lorenzo, D., Francis, S., Narayanan, S., Arnold, D.L., Collins, D.L.: Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging. Med. Image Anal. 17(1), 1–18 (2013)CrossRefGoogle Scholar
  11. 11.
    Gibson, E., et al.: Niftynet: a deep-learning platform for medical imaging. Comput. Methods Programs Biomed. 158, 113–122 (2018)CrossRefGoogle Scholar
  12. 12.
    Kaur, A., Kaur, L., Singh, A.: State-of-the-art segmentation techniques and future directions for multiple sclerosis brain lesions. Arch. Comput. Methods Eng. 1–27 (2020)Google Scholar
  13. 13.
    Kilsdonk, I.D., et al.: Increased cortical grey matter lesion detection in multiple sclerosis with 7 T MRI: a post-mortem verification study. Brain 139(5), 1472–1481 (2016)CrossRefGoogle Scholar
  14. 14.
    Kober, T., et al.: MP2RAGE multiple sclerosis magnetic resonance imaging at 3 T. Invest. Radiol. 47(6), 346–352 (2012)CrossRefGoogle Scholar
  15. 15.
    La Rosa, F., et al.: Multiple sclerosis cortical and WM lesion segmentation at 3T MRI: a deep learning method based on FLAIR and MP2RAGE. NeuroImage: Clin. 102335 (2020).  https://doi.org/10.1016/j.nicl.2020.102335. https://linkinghub.elsevier.com/retrieve/pii/S2213158220301728
  16. 16.
    La Rosa, F., et al.: Deep learning-based detection of cortical lesions in multiple sclerosis patients with FLAIR, DIR, and MP2RAGE MRI sequences. Multiple Sclerosis J. 25(CONF), 131–356 (2019)Google Scholar
  17. 17.
    Magliozzi, R., et al.: A gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann. Neurol. 68(4), 477–493 (2010)CrossRefGoogle Scholar
  18. 18.
    Maranzano, J., et al.: Comparison of multiple sclerosis cortical lesion types detected by multicontrast 3T and 7T MRI. Am. J. Neuroradiol. 40(7), 1162–1169 (2019)CrossRefGoogle Scholar
  19. 19.
    Marques, J.P., Kober, T., Krueger, G., van der Zwaag, W., Van de Moortele, P.F., Gruetter, R.: MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage 49(2), 1271–1281 (2010)CrossRefGoogle Scholar
  20. 20.
    Sati, P., et al.: Rapid, high-resolution, whole-brain, susceptibility-based MRI of multiple sclerosis. Multiple Sclerosis J. 20(11), 1464–1470 (2014)CrossRefGoogle Scholar
  21. 21.
    Sati, P., et al.: Rapid MR susceptibility imaging of the brain using segmented 3D echo-planar imaging (3D EPI) and its clinical applications. Magn. FLASH 68, 26–32 (2017)Google Scholar
  22. 22.
    Thompson, A.J., et al.: Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 17(2), 162–173 (2018)CrossRefGoogle Scholar
  23. 23.
    Treaba, C.A., et al.: Longitudinal characterization of cortical lesion development and evolution in multiple sclerosis with 7.0-T MRI. Radiology 291(3), 740–749 (2019)CrossRefGoogle Scholar
  24. 24.
    Tustison, N.J., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.LTS5Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Medical Image Analysis Laboratory, CIBMUniversity of LausanneLausanneSwitzerland
  3. 3.Radiology DepartmentLausanne University HospitalLausanneSwitzerland
  4. 4.Translational Neuroradiology Section, National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaUSA
  5. 5.University Hospital of Old Age Psychiatry and PsychotherapyUniversity of BernBernSwitzerland
  6. 6.Center for Biomedical Image Computing and Analytics, Department of Radiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  7. 7.Department of NeurologyCedars-Sinai Medical CenterLos AngelesUSA

Personalised recommendations