Skip to main content

LAMP: Large Deep Nets with Automated Model Parallelism for Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12264))

Abstract

Deep Learning (DL) models are becoming larger, because the increase in model size might offer significant accuracy gain. To enable the training of large deep networks, data parallelism and model parallelism are two well-known approaches for parallel training. However, data parallelism does not help reduce memory footprint per device. In this work, we introduce Large deep 3D ConvNets with Automated Model Parallelism (LAMP) and investigate the impact of both input’s and deep 3D ConvNets’ size on segmentation accuracy. Through automated model parallelism, it is feasible to train large deep 3D ConvNets with a large input patch, even the whole image. Extensive experiments demonstrate that, facilitated by the automated model parallelism, the segmentation accuracy can be improved through increasing model size and input context size, and large input yields significant inference speedup compared with sliding window of small patches in the inference. Code is available (https://monai.io/research/lamp-automated-model-parallelism).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 41–48 (2009)

    Google Scholar 

  2. Blumberg, S.B., Tanno, R., Kokkinos, I., Alexander, D.C.: Deeper image quality transfer: training low-memory neural networks for 3D images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 118–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_14

    Chapter  Google Scholar 

  3. Brügger, R., Baumgartner, C.F., Konukoglu, E.: A partially reversible U-net for memory-efficient volumetric image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 429–437. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_48

    Chapter  Google Scholar 

  4. Chen, T., Xu, B., Zhang, C., Guestrin, C.: Training deep nets with sublinear memory cost. arXiv preprint arXiv:1604.06174 (2016)

  5. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

    Article  Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  8. Gomez, A.N., Ren, M., Urtasun, R., Grosse, R.B.: The reversible residual network: backpropagation without storing activations. In: Advances in Neural Information Processing Systems, pp. 2214–2224 (2017)

    Google Scholar 

  9. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  10. Huang, Y., et al.: GPipe: efficient training of giant neural networks using pipeline parallelism. In: Advances in Neural Information Processing Systems, pp. 103–112 (2019)

    Google Scholar 

  11. Isensee, F., et al.: Abstract: nnU-Net: self-adapting framework for U-net-based medical image segmentation. In: Handels, H., Deserno, T., Maier, A., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2019. I, p. 22. Springer, Wiesbaden (2019). https://doi.org/10.1007/978-3-658-25326-4_7

    Chapter  Google Scholar 

  12. Jesson, A., Guizard, N., Ghalehjegh, S.H., Goblot, D., Soudan, F., Chapados, N.: CASED: curriculum adaptive sampling for extreme data imbalance. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 639–646. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_73

    Chapter  Google Scholar 

  13. Kervadec, H., Bouchtiba, J., Desrosiers, C., Granger, E., Dolz, J., Ayed, I.B.: Boundary loss for highly unbalanced segmentation. In: International Conference on Medical Imaging with Deep Learning, pp. 285–296 (2019)

    Google Scholar 

  14. Lee, H., et al.: torchgpipe, A GPipe implementation in PyTorch (2019). https://github.com/kakaobrain/torchgpipe

  15. Martens, J., Sutskever, I.: Training deep and recurrent networks with Hessian-free optimization. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 479–535. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_27

    Chapter  Google Scholar 

  16. Micikevicius, P., et al.: Mixed precision training. arXiv preprint arXiv:1710.03740 (2017)

  17. Narayanan, D., et al.: Pipedream: generalized pipeline parallelism for DNN training. In: Proceedings of the 27th ACM Symposium on Operating Systems Principles, pp. 1–15 (2019)

    Google Scholar 

  18. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)

    Google Scholar 

  19. Rajbhandari, S., Rasley, J., Ruwase, O., He, Y.: Zero: Memory optimization towards training a trillion parameter models. arXiv preprint arXiv:1910.02054 (2019)

  20. Raudaschl, P.F., et al.: Evaluation of segmentation methods on head and neck CT: Auto-segmentation challenge 2015. Med. Phys. 44, 2020–2036 (2017)

    Article  Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Shazeer, N., et al.: Mesh-TensorFlow: deep learning for supercomputers. In: Advances in Neural Information Processing Systems, pp. 10414–10423 (2018)

    Google Scholar 

  23. Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., Catanzaro, B.: Megatron-LM: training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053 (2019)

  24. Simpson, A.L., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv preprint arXiv:1902.09063 (2019)

  25. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS - 2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

    Chapter  Google Scholar 

  26. Tajbakhsh, N., et al.: Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans. Med. Imaging 35(5), 1299–1312 (2016)

    Article  Google Scholar 

  27. Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Netw. Mach. Learn. 4(2), 26–31 (2012)

    Google Scholar 

  28. Vallières, M., et al.: Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Sci. Rep. 7(1), 10117 (2017)

    Article  Google Scholar 

  29. Zhu, W., et al.: AnatomyNet: deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Med. Phys. 46(2), 576–589 (2019)

    Article  Google Scholar 

  30. Zhu, W., et al.: NeurReg: Neural registration and its application to image segmentation. In: The IEEE Winter Conference on Applications of Computer Vision, pp. 3617–3626 (2020)

    Google Scholar 

  31. Zhu, W., et al.: Neural multi-scale self-supervised registration for echocardiogram dense tracking. arXiv preprint arXiv:1906.07357 (2019)

  32. Zhu, W., Liu, C., Fan, W., Xie, X.: Deeplung: deep 3D dual path nets for automated pulmonary nodule detection and classification. In: WACV, pp. 673–681. IEEE (2018)

    Google Scholar 

  33. Zhu, W., Vang, Y.S., Huang, Y., Xie, X.: DeepEM: deep 3D ConvNets with EM for weakly supervised pulmonary nodule detection. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 812–820. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_90

    Chapter  Google Scholar 

  34. Zhuang, J., Dvornek, N.C., Li, X., Ventola, P., Duncan, J.S.: Invertible network for classification and biomarker selection for ASD. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 700–708. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_78

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wentao Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, W., Zhao, C., Li, W., Roth, H., Xu, Z., Xu, D. (2020). LAMP: Large Deep Nets with Automated Model Parallelism for Image Segmentation. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12264. Springer, Cham. https://doi.org/10.1007/978-3-030-59719-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59719-1_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59718-4

  • Online ISBN: 978-3-030-59719-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics