Skip to main content

Ear Cartilage Inference for Reconstructive Surgery with Convolutional Mesh Autoencoders

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Many children born with ear microtia undergo reconstructive surgery for both aesthetic and functional purposes. This surgery is a delicate procedure that requires the surgeon to carve a “scaffold” for a new ear, typically from the patient’s own rib cartilage. This is an unnecessarily invasive procedure, and reconstruction relies on the skill of the surgeon to accurately construct a scaffold that best suits the patient based on limited data. Work in stem-cell technologies and bioprinting present an opportunity to change this procedure by providing the opportunity to “bioprint” a personalised cartilage scaffold in a lab. To do so, however, a 3D model of the desired cartilage shape is first required. In this paper we optimise the standard convolutional mesh autoencoder framework such that, given only the soft tissue surface of an unaffected ear, it can accurately predict the shape of the underlying cartilage. To prevent predicted cartilage meshes from intersecting with, and protruding through, the soft tissue ear mesh, we develop a novel intersection-based loss function. These combined efforts present a means of designing personalised ear cartilage scaffold for use in reconstructive ear surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Mimics Inprint, Materialise, Leuven, Belgium.

References

  1. Agarwal, N., Yoon, S., Gopi, M.: Learning embedding of 3D models with quadric loss (2019)

    Google Scholar 

  2. Amberg, B., Romdhani, S., Vetter, T.: Optimal step nonrigid ICP algorithms for surface registration, pp. 1–8. IEEE (2007)

    Google Scholar 

  3. Bly, R., Bhrany, A., Murakami, C., Sie, K.: Microtia reconstruction. Facial Plast. Surg. Clin. North Am. 24(4), 577–591 (2016)

    Article  Google Scholar 

  4. Boscaini, D., Masci, J., Rodolà, E., Bronstein, M.M.: Learning shape correspondence with anisotropic convolutional neural networks (2016). https://arxiv.org/abs/1605.06437

  5. Bouritsas, G., Bokhnyak, S., Ploumpis, S., Zafeiriou, S., Bronstein, M.: Neural 3D morphable models: spiral convolutional networks for 3D shape representation learning and generation, pp. 7212–7221. IEEE (2019)

    Google Scholar 

  6. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond Euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017)

    Article  Google Scholar 

  7. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. In: ICLR 2014 (2013). https://arxiv.org/abs/1312.6203. First proposal of convolution operations on graphs in the spectral domain

  8. Cao, Y., Vacanti, J.P., Paige, K.T., Upton, J., Vacanti, C.A.: Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast. Reconstr. Surg. 100(2), 297–302 (1997)

    Article  Google Scholar 

  9. Cubitt, J.J., Chang, L., Liang, D., Vandervord, J., Marucci, D.D.: Auricular reconstruction. J. Paediatr. Child Health 55(5), 512–517 (2019)

    Article  Google Scholar 

  10. Defferrard, M., Bresson, X., Vandergheynst, P. (2016). http://arxiv.org/abs/1606.09375

  11. Desbrun, M., Meyer, M., Schröder, P., Barr, A.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: SIGGRAPH 1999, pp. 317–324. ACM Press/Addison-Wesley Publishing Co. (1999)

    Google Scholar 

  12. Diehl, F., Brunner, T., Truong Le, M., Knoll, A.: Towards graph pooling by edge contraction (2019). https://graphreason.github.io/papers/17.pdf

  13. Fan, H., Su, H., Guibas, L.: A point set generation network for 3D object reconstruction from a single image, pp. 2463–2471. IEEE (2017)

    Google Scholar 

  14. Fattah, A., Sebire, N.J., Bulstrode, N.W.: Donor site reconstitution for ear reconstruction. J. Plast. Reconstr. Aesthetic Surg. 63(9), 1459–1465 (2009)

    Article  Google Scholar 

  15. Fey, M., Lenssen, J.E., Weichert, F., Muller, H.: SplineCNN: fast geometric deep learning with continuous b-spline kernels. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 869–877 (2018)

    Google Scholar 

  16. Gong, S., Chen, L., Bronstein, M., Zafeiriou, S. (2019). https://arxiv.org/abs/1911.05856

  17. Griffin, M.F., Ibrahim, A., Seifalian, A.M., Butler, P.E.M., Kalaskar, D.M., Ferretti, P.: Argon plasma modification promotes adipose derived stem cells osteogenic and chondrogenic differentiation on nanocomposite polyurethane scaffolds; implications for skeletal tissue engineering. Mater. Sci. Eng. C 105, 110085 (2019)

    Article  Google Scholar 

  18. Jin, C.T., et al.: Creating the Sydney York morphological and acoustic recordings of ears database. IEEE Trans. Multimed. 16(1), 37–46 (2014)

    Article  Google Scholar 

  19. Jung, B.K., et al.: Ideal scaffold design for total ear reconstruction using a three-dimensional printing technique. J. Biomed. Mater. Res. Part B Appl. Biomater. 107(4), 1295–1303 (2019)

    Article  Google Scholar 

  20. Kang, H.W., Lee, S.J., Ko, I.K., Kengla, C., Yoo, J.J., Atala, A.: A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34(3), 312–319 (2016)

    Article  Google Scholar 

  21. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). https://arxiv.org/abs/1412.6980

  22. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (ICLR) (2016). https://arxiv.org/abs/1609.02907

  23. Levie, R., Monti, F., Bresson, X., Bronstein, M.M.: Cayleynets: graph convolutional neural networks with complex rational spectral filters. IEEE Trans. Signal Process. 67(1), 97–109 (2019)

    Article  MathSciNet  Google Scholar 

  24. Liu, Y., et al.: In vitro engineering of human ear-shaped cartilage assisted with CAD/CAM technology. Biomaterials 31(8), 2176–2183 (2009)

    Article  Google Scholar 

  25. Nealen, A., Igarashi, T., Sorkine, O., Alexa, M.: Laplacian mesh optimization. In: GRAPHITE 2006, pp. 381–389. ACM (2006)

    Google Scholar 

  26. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  27. Ploumpis, S., et al.: Towards a complete 3D morphable model of the human head (2019). https://arxiv.org/abs/1911.08008

  28. Ranjan, A., Bolkart, T., Sanyal, S., Black, M.J.: Generating 3D faces using convolutional mesh autoencoders (2018). http://arxiv.org/abs/1807.10267

  29. Tang, S., Li, B., Yu, H.: Chebnet: efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations (2019). https://arxiv.org/abs/1911.05467

  30. Veselkov, K., et al.: Hyperfoods: machine intelligent mapping of cancer-beating molecules in foods. Sci. Rep. 9(1), 9237 (2019)

    Article  Google Scholar 

  31. Yan, P., Bowyer, K.W.: Biometric recognition using 3D ear shape. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1297–1308 (2007)

    Article  Google Scholar 

  32. Ying, R., You, J., Morris, C., Ren, X., Hamilton, W.L., Leskovec, J.: Hierarchical graph representation learning with differentiable pooling (2018). https://arxiv.org/abs/1806.08804

  33. Zhou, G., et al.: In vitro regeneration of patient-specific ear-shaped cartilage and its first clinical application for auricular reconstruction. EBioMedicine 28(C), 287–302 (2018)

    Article  Google Scholar 

  34. Zhou, Y., Zaferiou, S.: Deformable models of ears in-the-wild for alignment and recognition, pp. 626–633. IEEE (2017)

    Google Scholar 

Download references

Acknowledgements

Stefanos Zafeiriou acknowledges support from EPSRC Fellowship DEFORM (EP/S010203/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eimear O’ Sullivan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sullivan, E.O. et al. (2020). Ear Cartilage Inference for Reconstructive Surgery with Convolutional Mesh Autoencoders. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12263. Springer, Cham. https://doi.org/10.1007/978-3-030-59716-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59716-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59715-3

  • Online ISBN: 978-3-030-59716-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics