Skip to main content

Pair-Wise and Group-Wise Deformation Consistency in Deep Registration Network

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Ideally the deformation field from one image to another should be invertible and smooth to register images bidirectionally and preserve topology of anatomical structures. In traditional registration methods, differential geometry constraints could guarantee such topological consistency but are computationally intensive and time consuming. Recent studies showed that image registration using deep neural networks is as accurate as and also much faster than traditional methods. Current popular unsupervised learning-based algorithms aim to directly estimate spatial transformations by optimizing similarity between images under registration; however, the estimated deformation fields are often in one direction and do not possess inverse-consistency if swapping the order of two input images. Notice that the consistent registration can reduce systematic bias caused by the order of input images, increase robustness, and improve reliability of subsequent data analysis. Accordingly, in this paper, we propose a new training strategy by introducing both pair-wise and group-wise deformation consistency constraints. Specifically, losses enforcing both inverse-consistency for image pairs and cycle-consistency for image groups are proposed for model training, in addition to conventional image similarity and topology constraints. Experiments on 3D brain magnetic resonance (MR) images showed that such a learning algorithm yielded consistent deformations even after switching the order of input images or reordering images within groups. Furthermore, the registration results of longitudinal elderly MR images demonstrated smaller volumetric measurement variability in labeling regions of interest (ROIs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Courchesne, E., et al.: Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology 216(3), 672–682 (2000)

    Article  Google Scholar 

  2. Jack, C.R., et al.: Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology 55(4), 484–490 (2000)

    Article  Google Scholar 

  3. Hart, G.L., Zach, C., Niethammer, M.: An optimal control approach for deformable registration. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9–16 (2009)

    Google Scholar 

  4. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)

    Article  Google Scholar 

  5. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: efficient non-parametric image registration. NeuroImage 45(1), S61–S72 (2009)

    Article  Google Scholar 

  6. Cao, X., Fan, J., Dong, P., Ahmad, S., Yap, P.-T., Shen, D.: Image registration using machine and deep learning. In: Handbook of Medical Image Computing and Computer-Assisted Intervention, pp. 319–342. Academic Press (2020)

    Google Scholar 

  7. Haskins, G., Kruger, U., Yan, P.: Deep learning in medical image registration: a survey. arXiv preprint arXiv:1903.02026 (2019)

  8. Fu, Y., Lei, Y., Wang, T., Curran, W.J., Liu, T., Yang, X.: Deep learning in medical image registration: a review. arXiv preprint arXiv:1912.12318 (2019)

  9. Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning for fast probabilistic diffeomorphic registration. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 729–738. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_82

    Chapter  Google Scholar 

  10. Kim, B., Kim, J., Lee, J.-G., Kim, D.H., Park, S.H., Ye, J.C.: Unsupervised deformable image registration using cycle-consistent CNN. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 166–174. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_19

    Chapter  Google Scholar 

  11. Zhang, J.: Inverse-consistent deep networks for unsupervised deformable image registration. arXiv preprint arXiv:1809.03443 (2018)

  12. Kuang, D.: Cycle-consistent training for reducing negative jacobian determinant in deep registration networks. In: Burgos, N., Gooya, A., Svoboda, D. (eds.) SASHIMI 2019. LNCS, vol. 11827, pp. 120–129. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32778-1_13

    Chapter  Google Scholar 

  13. Mueller, S.G., Weiner, M.W., Thal, L.J., Petersen, R.C.: Ways toward an early diagnosis in Alzheimer’s disease: The Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimer’s Dement. 1(1), 55–66 (2005)

    Article  Google Scholar 

  14. Klein, A., et al.: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 46(3), 786–802 (2009)

    Article  Google Scholar 

  15. Fan, J., Cao, X., Xue, Z., Yap, P.-T., Shen, D.: BIRNet: brain image registration using dual-supervised fully convolutional networks. Med. Image Anal. 54, 193–206 (2019)

    Article  Google Scholar 

  16. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

This work was partially supported by the National Key Research and Development Program of China (2018YFC0116400) and the National Natural Science Foundation of China (61671204).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dinggang Shen or Zhong Xue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gu, D. et al. (2020). Pair-Wise and Group-Wise Deformation Consistency in Deep Registration Network. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12263. Springer, Cham. https://doi.org/10.1007/978-3-030-59716-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59716-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59715-3

  • Online ISBN: 978-3-030-59716-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics