Skip to main content

Chest X-Ray Report Generation Through Fine-Grained Label Learning

Part of the Lecture Notes in Computer Science book series (LNIP,volume 12262)

Abstract

Obtaining automated preliminary read reports for common exams such as chest X-rays will expedite clinical workflows and improve operational efficiencies in hospitals. However, the quality of reports generated by current automated approaches is not yet clinically acceptable as they cannot ensure the correct detection of a broad spectrum of radiographic findings nor describe them accurately in terms of laterality, anatomical location, severity, etc. In this work, we present a domain-aware automatic chest X-ray radiology report generation algorithm that learns fine-grained description of findings from images and uses their pattern of occurrences to retrieve and customize similar reports from a large report database. We also develop an automatic labeling algorithm for assigning such descriptors to images and build a novel deep learning network that recognizes both coarse and fine-grained descriptions of findings. The resulting report generation algorithm significantly outperforms the state of the art using established metrics.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-59713-9_54
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-59713-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Coden, A., Gruhl, D., Lewis, N., Tanenblatt, M., Terdiman, J.: SPOT the drug! An unsupervised pattern matching method to extract drug names from very large clinical corpora. In: Proceedings of the 2012 IEEE Second International Conference on Healthcare Informatics, Imaging and Systems Biology, pp. 7008–7024 (2012)

    Google Scholar 

  2. Demmer-Fushma, D., et al.: Preparing a collection of radiology examinations for distribution and retrieval. J. Am. Med. Inform. Assoc. (JAMIA) 23(2), 304–310 (2014)

    CrossRef  Google Scholar 

  3. Gale, W., Oakden-Rayner, L., Carneiro, G., Bradley, A.P., Palmer, L.J.: Producing radiologist-quality reports for interpretable artificial intelligence. arXiv preprint arXiv:1806.00340 (2018)

  4. Guo, Y., Kakrania, D., Baldwin, T., Syeda-Mahmood, T.: Efficient clinical concept extraction in electronic medical records. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  5. Hansell, D.M., Bankier, A.A., MacMahon, H., McLoud, T.C., Muller, N.L., Remy, J.: Fleischner society: glossary of terms for thoracic imaging. Radiology 246(3), 697–722 (2008)

    CrossRef  Google Scholar 

  6. Harzig, P., Chen, Y.Y., Chen, F., Lienhart, R.: Addressing data bias problems for chest x-ray image report generation. arXiv preprint arXiv:1908.02123 (2019)

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    CrossRef  Google Scholar 

  9. Jing, B., Xie, P., Xing, E.: On the automatic generation of medical imaging reports. arXiv preprint arXiv:1711.08195 (2017)

  10. Johnson, A.E.W., et al.: MIMIC-CXR: a large publicly available database of labeled chest radiographs. arXiv preprint arXiv:1901.07042 (2019)

  11. Krause, J., Johnson, J., Krishna, R., Fei-Fei, L.: A hierarchical approach for generating descriptive image paragraphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 317–325 (2017)

    Google Scholar 

  12. Li, C.Y., Liang, X., Hu, Z., Xing, E.P.: Knowledge-driven encode, retrieve, paraphrase for medical image report generation. arXiv preprint arXiv:1903.10122 (2019)

  13. Li, Y., Liang, X., Hu, Z., Xing, E.P.: Hybrid retrieval-generation reinforced agent for medical image report generation. In: Advances in Neural Information Processing Systems, pp. 1530–1540 (2018)

    Google Scholar 

  14. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  15. Liu, G., et al.: Clinically accurate chest x-ray report generation. arXiv:1904.02633v (2019)

  16. McCord, M.C., Murdock, J.W., Bogurae, B.K.: Deep parsing in Watson. IBM J. Res. Dev. 56(3), 5–15 (2012)

    Google Scholar 

  17. Nguyen, L.D., Lin, D., Lin, Z., Cao, J.: Deep CNNs for microscopic image classification by exploiting transfer learning and feature concatenation. In: IEEE International Symposium on Circuits and Systems, pp. 1–5 (2018)

    Google Scholar 

  18. Rennie, S.J., Marcheret, E., Mroueh, Y., Ross, J., Goel, V.: Self-critical sequence training for image captioning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7008–7024 (2017)

    Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 [cs.CV] (2014)

  20. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption generator. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2015)

    Google Scholar 

  21. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2097–2106 (2017)

    Google Scholar 

  22. Wang, X., Peng, Y., Lu, L., Lu, Z., Summers, R.M.: TieNet: text-image embedding network for common thorax disease classification and reporting in chest x-rays. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9049–9058 (2018)

    Google Scholar 

  23. Wu, Y., He, K.: Group normalization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_1

    CrossRef  Google Scholar 

  24. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: International Conference on Machine Learning, pp. 2048–2057 (2015)

    Google Scholar 

  25. Xue, Y., et al.: Multimodal recurrent model with attention for automated radiology report generation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 457–466. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_52

    CrossRef  Google Scholar 

  26. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv:1511.07122 [cs.CV] (2015)

  27. Yu, K., Salzmann, M.: Statistically-motivated second-order pooling. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 621–637. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_37

    CrossRef  Google Scholar 

  28. Yuan, J., Liao, H., Luo, R., Luo, J.: Automatic radiology report generation based on multi-view image fusion and medical concept enrichment. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 721–729. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_80

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanveer Syeda-Mahmood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Syeda-Mahmood, T. et al. (2020). Chest X-Ray Report Generation Through Fine-Grained Label Learning. In: , et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12262. Springer, Cham. https://doi.org/10.1007/978-3-030-59713-9_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59713-9_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59712-2

  • Online ISBN: 978-3-030-59713-9

  • eBook Packages: Computer ScienceComputer Science (R0)