Skip to main content

Residual-CycleGAN Based Camera Adaptation for Robust Diabetic Retinopathy Screening

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12262))

Abstract

There are extensive researches focusing on automated diabetic retinopathy (DR) detection from fundus images. However, the accuracy drop is observed when applying these models in real-world DR screening, where the fundus camera brands are different from the ones used to capture the training images. How can we train a classification model on labeled fundus images acquired from only one camera brand, yet still achieves good performance on images taken by other brands of cameras? In this paper, we quantitatively verify the impact of fundus camera brands related domain shift on the performance of DR classification models, from an experimental perspective. Further, we propose camera-oriented residual-CycleGAN to mitigate the camera brand difference by domain adaptation and achieve increased classification performance on target camera images. Extensive ablation experiments on both the EyePACS dataset and a private dataset show that the camera brand difference can significantly impact the classification performance and prove that our proposed method can effectively improve the model performance on the target domain. We have inferred and labeled the camera brand for each image in the EyePACS dataset and will publicize the camera brand labels for further research on domain adaptation.

D. Yang and Y. Yang—Equal contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ruta, L.M., Magliano, D.J., Lemesurier, R., Taylor, H.R., Zimmet, P.Z., Shaw, J.E.: Prevalence of diabetic retinopathy in Type 2 diabetes in developing and developed countries. Diabet. Med. 30(4), 387–398 (2013)

    Article  Google Scholar 

  2. Beagley, J., Guariguata, L., Weil, C., Motala, A.A.: Global estimates of undiagnosed diabetes in adults. Diabetes Res. Clin. Pract. 103(2), 150–160 (2014)

    Article  Google Scholar 

  3. Gulshan, V., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama 316(22), 2402–2410 (2016)

    Article  Google Scholar 

  4. Pratt, H., Coenen, F., Broadbent, D.M., Harding, S.P., Zheng, Y.: Convolutional neural networks for diabetic retinopathy. Procedia Comput. Sci. 90, 200–205 (2016)

    Article  Google Scholar 

  5. Gargeya, R., Leng, T.: Automated identification of diabetic retinopathy using deep learning. Ophthalmology 124(7), 962–969 (2017)

    Article  Google Scholar 

  6. Yang, Y., Li, T., Li, W., Wu, H., Fan, W., Zhang, W.: Lesion detection and grading of diabetic retinopathy via two-stages deep convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 533–540. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_61

    Chapter  Google Scholar 

  7. Abràmoff, M.D., Lavin, P.T., Birch, M., Shah, N., Folk, J.C.: Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit. Med. 1(1), 1–8 (2018)

    Article  Google Scholar 

  8. Csurka, G.: Domain adaptation for visual applications: a comprehensive survey. arXiv preprint arXiv:1702.05374 (2017)

  9. Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing 312, 135–153 (2018)

    Article  Google Scholar 

  10. Ghafoorian, M., et al.: Transfer learning for domain adaptation in MRI: application in brain lesion segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 516–524. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_59

    Chapter  Google Scholar 

  11. Dong, N., Kampffmeyer, M., Liang, X., Wang, Z., Dai, W., Xing, E.: Unsupervised domain adaptation for automatic estimation of cardiothoracic ratio. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 544–552. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_61

    Chapter  Google Scholar 

  12. Ren, J., Hacihaliloglu, I., Singer, Eric A., Foran, David J., Qi, X.: Adversarial domain adaptation for classification of prostate histopathology whole-slide images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 201–209. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_23

    Chapter  Google Scholar 

  13. Liu, P., Kong, B., Li, Z., Zhang, S., Fang, R.: CFEA: collaborative feature ensembling adaptation for domain adaptation in unsupervised optic disc and cup segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 521–529. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_58

    Chapter  Google Scholar 

  14. Piva, A.: An overview on image forensics. In: ISRN Signal Processing (2013)

    Google Scholar 

  15. Cozzolino, D., Verdoliva, L.: Noiseprint: a CNN-based camera model fingerprint. IEEE Trans. Inf. Forensics Secur. 15, 144–159 (2019)

    Article  Google Scholar 

  16. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)

    MathSciNet  Google Scholar 

  17. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  18. Kaggle diabetic retinopathy competition (2015). https://www.kaggle.com/c/diabeticretinopathy-detection

  19. Chakrabarti, R., Harper, C.A., Keeffe, J.E.: Diabetic retinopathy management guidelines. Expert Rev. Ophthalmol. 7(5), 417–439 (2012)

    Article  Google Scholar 

  20. https://github.com/PaddlePaddle/Paddle/tree/1.6.2

  21. https://github.com/PaddlePaddle/models/blob/develop/PaddleCV/PaddleGAN/network/CycleGAN_network.py

  22. Cohen, J.: Weighted kappa: nominal scale agreement provision for scaled disagreement or partial credit. Psychol. Bull. 70(4), 213 (1968)

    Article  Google Scholar 

  23. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7167–7176 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanwu Xu .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 553 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, D., Yang, Y., Huang, T., Wu, B., Wang, L., Xu, Y. (2020). Residual-CycleGAN Based Camera Adaptation for Robust Diabetic Retinopathy Screening. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12262. Springer, Cham. https://doi.org/10.1007/978-3-030-59713-9_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59713-9_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59712-2

  • Online ISBN: 978-3-030-59713-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics