Advertisement

CDF-Net: Cross-Domain Fusion Network for Accelerated MRI Reconstruction

Conference paper
  • 4.4k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12262)

Abstract

Accurate reconstruction of accelerated Magnetic Resonance Imaging (MRI) would produce myriad clinical benefits including higher patient throughput and lower examination cost. Traditional approaches utilize statistical methods in the frequency domain combined with Inverse Discrete Fourier Transform (IDFT) to interpolate the under-sampled frequency domain (referred as k-space) and often result in large artifacts in spatial domain. Recent advances in deep learning-based methods for MRI reconstruction, albeit outperforming traditional methods, fail to incorporate raw coil data and spatial domain data in an end-to-end manner. In this paper, we introduce a cross-domain fusion network (CDF-Net), a neural network architecture that recreates high resolution MRI reconstructions from an under-sampled single-coil k-space by taking advantage of relationships in both the frequency and spatial domains while also having an awareness of which frequencies have been omitted. CDF-Net consists of three main components, a U-Net variant operating on the spatial domain, another U-Net performing inpainting in k-space, and a ‘frequency informed’ U-Net variant merging the two reconstructions as well as a skip connected zero-filled reconstruction. The proposed CDF-Net represents one of the first end-to-end MRI reconstruction network that leverages relationships in both k-space and the spatial domain with a novel ‘frequency information pathway’ that allows information about missing frequencies to flow into the spatial domain. Trained on the largest public fastMRI dataset, CDF-Net outperforms both traditional statistical interpolation and deep learning-based methods by a large margin.

Keywords

MRI reconstruction Deep learning Accelerated acquisition 

References

  1. 1.
    Zhu, B., Liu, J.Z., Cauley, S.F., Rosen, B.R.: Image reconstruction by domain transform manifold learning. Nature 555(7697), 487 (2018)CrossRefGoogle Scholar
  2. 2.
    Hennig, J., Nauerth, A., Friedburg, H.: Rare imaging: a fast imaging method for clinical MR. Magn. Reson. Med. 3(6), 823–833 (1986)CrossRefGoogle Scholar
  3. 3.
    Oppelt, A., Graumann, R., Barfuss, H., Fischer, H., Hartl, W., Schajor, W.: FISP - a new fast MRI sequence. Electromedica 54(1), 15–18 (1986) Google Scholar
  4. 4.
    Moratal, D., Valles-Luch, A., Marti-Bonmati, L., Brummer, M.E.: k-space tutorial: an MRI educational tool for a better understanding of k-space. Biomed. Imaging Interv. J. 4(1) (2008)Google Scholar
  5. 5.
    Knoll, F., et al.: Deep learning methods for parallel magnetic resonance image reconstruction. Preprint arXiv:1904 (2019)
  6. 6.
    Klatzer, T., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79, 3055–3071 (2018)CrossRefGoogle Scholar
  7. 7.
    Aggarwal, H.K., Mani, M.P., Jacob, M.: MoDL: model-based deep learning architecture for inverse problems. IEEE Trans. Med. Imaging 38(2), 394–405 (2018)CrossRefGoogle Scholar
  8. 8.
    Zhang, P., Wang, F., Xu, W., Li, Yu.: Multi-channel generative adversarial network for parallel magnetic resonance image reconstruction in K-space. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 180–188. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00928-1_21CrossRefGoogle Scholar
  9. 9.
    Huang, Q., Yang, D., Wu, P., Qu, H., Yi, J., Metaxas, D.: MRI reconstruction via cascaded channel-wise attention network. In: 2019 IEEE 16th International Symposium on Biomedical Imaging, pp. 1622–1626 (2019)Google Scholar
  10. 10.
    Lønning, K., Putzky, P., Caan, M.W.A., Welling, M.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. Int. Soc. Magn. Reson. Med. (2018) Google Scholar
  11. 11.
    Schlemper, J., Caballero, J., Hajnal, J.V., Price, A.N., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37(2), 493–501 (2017)Google Scholar
  12. 12.
    Schlemper, J., Caballero, J., Price, A.N., Hajnal, J.V., Rueckert, D., Qin, C.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 38(1), 280–290 (2019)CrossRefGoogle Scholar
  13. 13.
    Eo, T., Jun, Y., Kim, T., Jang, J., Lee, H.-J., Hwang, D.: KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images. Magn. Reson. Med. 80(5), 2188–2201 (2018)CrossRefGoogle Scholar
  14. 14.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  15. 15.
    Chen, K., Wang, J., Chen, L.-C., Gao, H., Xu, W., Nevatia, R.: ABC-CNN: an attention based convolutional neural network for visual question answering. arXiv preprint arXiv:1511.05960 (2015)
  16. 16.
    Bello, I., Zoph, B., Vaswani, A., Shlens, J., Le, Q.V.: Attention augmented convolutional net-works. arXiv preprint arXiv:1904.09925 (2019)
  17. 17.
    Uecker, M., et al.: ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: where sense meets GRAPPA. Magn. Reson. Med. 71(3), 990–1001 (2014)CrossRefGoogle Scholar
  18. 18.
    Tygert, M., Zbontar, J.: fastMRI: an open dataset and benchmarks for accelerated MRI. Preprint arXiv:1811.08839 (2018)
  19. 19.
    Tygert, M., Zbontar, J.: Simulating single-coil MRI from the responses of multiple coils. Preprint arXiv:1811.08026 (2018)

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of TorontoTorontoCanada
  2. 2.University Health NetworkTorontoCanada
  3. 3.Vector InstituteTorontoCanada

Personalised recommendations