Skip to main content

Learned Proximal Networks for Quantitative Susceptibility Mapping

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12262))

Abstract

Quantitative Susceptibility Mapping (QSM) estimates tissue magnetic susceptibility distributions from Magnetic Resonance (MR) phase measurements by solving an ill-posed dipole inversion problem. Conventional single orientation QSM methods usually employ regularization strategies to stabilize such inversion, but may suffer from streaking artifacts or over-smoothing. Multiple orientation QSM such as calculation of susceptibility through multiple orientation sampling (COSMOS) can give well-conditioned inversion and an artifact free solution but has expensive acquisition costs. On the other hand, Convolutional Neural Networks (CNN) show great potential for medical image reconstruction, albeit often with limited interpretability. Here, we present a Learned Proximal Convolutional Neural Network (LP-CNN) for solving the ill-posed QSM dipole inversion problem in an iterative proximal gradient descent fashion. This approach combines the strengths of data-driven restoration priors and the clear interpretability of iterative solvers that can take into account the physical model of dipole convolution. During training, our LP-CNN learns an implicit regularizer via its proximal, enabling the decoupling between the forward operator and the data-driven parameters in the reconstruction algorithm. More importantly, this framework is believed to be the first deep learning QSM approach that can naturally handle an arbitrary number of phase input measurements without the need for any ad-hoc rotation or re-training. We demonstrate that the LP-CNN provides state-of-the-art reconstruction results compared to both traditional and deep learning methods while allowing for more flexibility in the reconstruction process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In fact, the expression in (1) can also be interpreted as a Maximum a Posteriori (MAP) estimator.

  2. 2.

    \(A^H\) denotes the conjugate transpose (or Hermitian transpose) of the matrix A.

  3. 3.

    Any other susceptibility estimation choices can serve as an initialization as well.

  4. 4.

    We chose an \(\ell _2\) norm for simplicity, and other choices are certainly possible, potentially providing further reconstruction improvements.

  5. 5.

    Our code is released at https://github.com/Sulam-Group.

References

  1. Abdul-Rahman, H., et al.: Fast three-dimensional phase-unwrapping algorithm based on sorting by reliability following a non-continuous path. In: Optical Measurement Systems for Industrial Inspection IV, vol. 5856, pp. 32–40. International Society for Optics and Photonics (2005)

    Google Scholar 

  2. Acosta-Cabronero, J., et al.: In vivo quantitative susceptibility mapping (QSM) in Alzheimer’s disease. PloS One 8(11), e81093 (2013)

    Article  Google Scholar 

  3. Adler, J., Öktem, O.: Learned primal-dual reconstruction. IEEE Trans. Med. Imaging 37(6), 1322–1332 (2018)

    Article  Google Scholar 

  4. Ayton, S., et al.: Cerebral quantitative susceptibility mapping predicts amyloid-\(\beta \)-related cognitive decline. Brain 140(8), 2112–2119 (2017)

    Article  Google Scholar 

  5. Bollmann, S., et al.: DeepQSM-using deep learning to solve the dipole inversion for quantitative susceptibility mapping. NeuroImage 195, 373–383 (2019)

    Article  Google Scholar 

  6. Bruckstein, A.M., et al.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009)

    Article  MathSciNet  Google Scholar 

  7. Chen, W., et al.: Quantitative susceptibility mapping of multiple sclerosis lesions at various ages. Radiology 271(1), 183–192 (2014)

    Article  Google Scholar 

  8. Chen, Y., et al.: QSMGAN: improved quantitative susceptibility mapping using 3D generative adversarial networks with increased receptive field. NeuroImage 207, 116389 (2020)

    Article  Google Scholar 

  9. De Rochefort, L., et al.: Quantitative MR susceptibility mapping using piece-wise constant regularized inversion of the magnetic field. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 60(4), 1003–1009 (2008)

    Article  Google Scholar 

  10. Deistung, A., et al.: Overview of quantitative susceptibility mapping. NMR Biomed. 30(4), e3569 (2017)

    Article  Google Scholar 

  11. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  12. Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018)

    Article  Google Scholar 

  13. Jenkinson, M., Smith, S.: A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5(2), 143–156 (2001)

    Article  Google Scholar 

  14. Jung, W., Bollmann, S., Lee, J.: Overview of quantitative susceptibility mapping using deep learning: current status, challenges and opportunities. NMR Biomed. e4292 (2020). https://onlinelibrary.wiley.com/doi/abs/10.1002/nbm.4292

  15. Jung, W., et al.: Exploring linearity of deep neural network trained QSM: QSMnet+. NeuroImage 211, 116619 (2020)

    Article  Google Scholar 

  16. Kames, C., et al.: Proximal variational networks: generalizable deep networks for solving the dipole-inversion problem. In: 5th International QSM Workshop (2019)

    Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  18. Langkammer, C., et al.: Quantitative susceptibility mapping in multiple sclerosis. Radiology 267(2), 551–559 (2013)

    Article  Google Scholar 

  19. Langkammer, C., et al.: Quantitative susceptibility mapping: report from the 2016 reconstruction challenge. Magn. Reson. Med. 79(3), 1661–1673 (2018)

    Article  Google Scholar 

  20. Li, W., Wu, B., Liu, C.: 5223 STI Suite: a software package for quantitative susceptibility imaging (2013)

    Google Scholar 

  21. Li, W., et al.: Susceptibility tensor imaging (STI) of the brain. NMR Biomed. 30(4), e3540 (2017)

    Article  Google Scholar 

  22. Li, X., et al.: Magnetic susceptibility contrast variations in multiple sclerosis lesions. J. Magn. Reson. Imaging 43(2), 463–473 (2016)

    Article  Google Scholar 

  23. Liu, C.: Susceptibility tensor imaging. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 63(6), 1471–1477 (2010)

    Article  Google Scholar 

  24. Liu, C., et al.: Quantitative susceptibility mapping: contrast mechanisms and clinical applications. Tomography 1(1), 3 (2015)

    Article  Google Scholar 

  25. Liu, C., et al.: Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain. J. Magn. Reson. Imaging 42(1), 23–41 (2015)

    Article  Google Scholar 

  26. Liu, T., et al.: Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 61(1), 196–204 (2009)

    Article  Google Scholar 

  27. Liu, T., et al.: Morphology enabled dipole inversion (MEDI) from a single-angle acquisition: comparison with cosmos in human brain imaging. Magn. Reson. Med. 66(3), 777–783 (2011)

    Article  Google Scholar 

  28. Liu, T., et al.: Nonlinear formulation of the magnetic field to source relationship for robust quantitative susceptibility mapping. Magn. Reson. Med. 69(2), 467–476 (2013)

    Article  Google Scholar 

  29. Mardani, M., et al.: Deep generative adversarial neural networks for compressive sensing MRI. IEEE Trans. Med. Imaging 38(1), 167–179 (2018)

    Article  MathSciNet  Google Scholar 

  30. Osher, S., et al.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4(2), 460–489 (2005)

    Article  MathSciNet  Google Scholar 

  31. Özbay, P.S., et al.: A comprehensive numerical analysis of background phase correction with v-sharp. NMR Biomed. 30(4), e3550 (2017)

    Article  Google Scholar 

  32. Parikh, N., et al.: Proximal algorithms. Found. Trends® Optim. 1(3), 127–239 (2014)

    Article  MathSciNet  Google Scholar 

  33. Polak, D., et al.: Nonlinear dipole inversion (NDI) enables robust quantitative susceptibility mapping (QSM). NMR Biomed. (2020). https://doi.org/10.1002/nbm.4271

    Article  Google Scholar 

  34. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  35. Shmueli, K., et al.: Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 62(6), 1510–1522 (2009)

    Article  Google Scholar 

  36. Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143–155 (2002)

    Article  Google Scholar 

  37. Sulam, J., et al.: On multi-layer basis pursuit, efficient algorithms and convolutional neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 42, 1968–1980 (2019)

    Article  Google Scholar 

  38. Van Bergen, J., et al.: Colocalization of cerebral iron with amyloid beta in mild cognitive impairment. Sci. Rep. 6(1), 1–9 (2016)

    Article  Google Scholar 

  39. Wang, Y., Liu, T.: Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker. Magn. Reson. Med. 73(1), 82–101 (2015)

    Article  Google Scholar 

  40. Wei, H., et al.: Streaking artifact reduction for quantitative susceptibility mapping of sources with large dynamic range. NMR Biomed. 28(10), 1294–1303 (2015)

    Article  Google Scholar 

  41. Yoon, J., et al.: Quantitative susceptibility mapping using deep neural network: QSMnet. NeuroImage 179, 199–206 (2018)

    Article  Google Scholar 

  42. Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint arXiv:1605.07146 (2016)

Download references

Acknowledgement

The authors would like to thank Mr. Joseph Gillen, Ms. Terri Brawner, Ms. Kathleen Kahl and Ms. Ivana Kusevic for their assistance with data acquisition. This work was partly supported by NCRR and NIBIB (P41 EB015909).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremias Sulam .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2177 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lai, KW., Aggarwal, M., van Zijl, P., Li, X., Sulam, J. (2020). Learned Proximal Networks for Quantitative Susceptibility Mapping. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12262. Springer, Cham. https://doi.org/10.1007/978-3-030-59713-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59713-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59712-2

  • Online ISBN: 978-3-030-59713-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics