Skip to main content

Heterogeneity Measurement of Cardiac Tissues Leveraging Uncertainty Information from Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Identifying arrhythmia substrates and quantifying their heterogeneity has great potential to provide critical guidance for radio frequency ablation. However, quantitative analysis of heterogeneity on cardiac optical coherence tomography (OCT) images is lacking. In this paper, we conduct the first study on quantifying cardiac tissue heterogeneity from human OCT images. Our proposed method applies a dropout-based Monte Carlo sampling technique to measure the model uncertainty. The heterogeneity information is extracted by decoupling the intra/inter-tissue heterogeneity and tissue boundary uncertainty from the uncertainty measurement. We empirically demonstrate that our model can highlight the subtle features from OCT images, and the heterogeneity information extracted is positively correlated with the tissue heterogeneity information from corresponding histology images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aslanidi, O.V., Boyett, M.R., Dobrzynski, H., Li, J., Zhang, H.: Mechanisms of transition from normal to reentrant electrical activity in a model of rabbit atrial tissue: interaction of tissue heterogeneity and anisotropy. Biophysical J. 96(3), 798–817 (2009)

    Article  Google Scholar 

  2. Baues, M., et al.: Fibrosis imaging: current concepts and future directions. Adv. Drug Deliv. Rev. 121, 9–26 (2017)

    Article  Google Scholar 

  3. Buch, K., et al.: Using texture analysis to determine human papillomavirus status of oropharyngeal squamous cell carcinomas on CT. AJNR Am. J. Neuroradiol. 36(7), 1343–1348 (2015)

    Article  Google Scholar 

  4. Cua, M., et al.: Morphological phenotyping of mouse hearts using optical coherence tomography. J. Biomed. Opt. 19(11), 116007 (2014)

    Article  Google Scholar 

  5. Fleming, C.P., Rosenthal, N., Rollins, A.M., Arruda, M.: First in vivo real-time imaging of endocardial RF ablation by optical coherence tomography. J. Innov. Card. Rhythm Manag. 2, 199–201 (2011)

    Google Scholar 

  6. Fujima, N., et al.: The utility of MRI histogram and texture analysis for the prediction of histological diagnosis in head and neck malignancies. Cancer Imaging 19(1), 5 (2019)

    Article  Google Scholar 

  7. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning. pp. 1050–1059 (2016)

    Google Scholar 

  8. Gan, Y., Lye, T.H., Marboe, C.C., Hendon, C.P.: Characterization of the human myocardium by optical coherence tomography. J. Biophotonics 12(12), e201900094 (2019)

    Article  Google Scholar 

  9. Gan, Y., Tsay, D., Amir, S.B., Marboe, C.C., Hendon, C.P.: Automated classification of optical coherence tomography images of human atrial tissue. J. Biomed. Opt. 21(10), 101407 (2016)

    Article  Google Scholar 

  10. Goergen, C.J., et al.: Optical coherence tractography using intrinsic contrast. Opt. Lett. 37(18), 3882–3884 (2012)

    Article  Google Scholar 

  11. Haissaguerre, M., et al.: Intermittent drivers anchoring to structural heterogeneities as a major pathophysiological mechanism of human persistent atrial fibrillation. J. Physiol. 594(9), 2387–2398 (2016)

    Article  Google Scholar 

  12. Hsiung, P.L., Nambiar, P.R., Fujimoto, J.G.: Effect of tissue preservation on imaging using ultrahigh resolution optical coherence tomography. J. Biomed. Opt. 10(6), 064033 (2005)

    Article  Google Scholar 

  13. Hu, S., et al.: Supervised uncertainty quantification for segmentation with multiple annotations. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 137–145. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_16

    Chapter  Google Scholar 

  14. Braunmühl, T.: Optical coherence tomography. Der Hautarzt 66(7), 499–503 (2015). https://doi.org/10.1007/s00105-015-3607-z

    Article  Google Scholar 

  15. Kather, J.N., et al.: Multi-class texture analysis in colorectal cancer histology. Scientific Reports 6, 27988 (2016)

    Article  Google Scholar 

  16. Kendall, A., Badrinarayanan, V., Cipolla, R.: Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. arXiv preprint arXiv:1511.02680 (2015)

  17. Khurshid, S., et al.: Frequency of cardiac rhythm abnormalities in a half million adults. Circ. Arrhythm Electrophysiol. 11(7), e006273 (2018)

    Article  Google Scholar 

  18. Laplante, P.: Encyclopedia of Image Processing. CRC Press, United States (2018)

    Book  Google Scholar 

  19. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: IEEE International Conference on Computer Vision. pp. 2980–2988 (2017)

    Google Scholar 

  20. López, B., et al.: Circulating biomarkers of myocardial fibrosis: the need for a reappraisal. J. Am. Coll. Cardiol. 65(22), 2449–2456 (2015)

    Article  Google Scholar 

  21. Lye, T.H., Iyer, V., Marboe, C.C., Hendon, C.P.: Mapping the human pulmonary venoatrial junction with optical coherence tomography. Biomed. Opt. Express 10(2), 434–448 (2019)

    Article  Google Scholar 

  22. Mukaka, M.: A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 24(3), 69–71 (2012)

    Google Scholar 

  23. Rotimi, O., Cairns, A., Gray, S., Moayyedi, P., Dixon, M.: Histological identification of helicobacter pylori: comparison of staining methods. J. Clin. Pathol. 53(10), 756–759 (2000)

    Article  Google Scholar 

  24. Roy, A.G., et al.: Relaynet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomed. Opt. Express 8(8), 3627–3642 (2017)

    Article  Google Scholar 

  25. Schober, P., Boer, C., Schwarte, L.A.: Correlation coefficients: appropriate use and interpretation. Anesthesia & Analgesia 126(5), 1763–1768 (2018)

    Article  Google Scholar 

  26. Sedai, S., Antony, B., Mahapatra, D., Garnavi, R.: Joint segmentation and uncertainty visualization of retinal layers in optical coherence tomography images using bayesian deep learning. In: Stoyanov, D., et al. (eds.) OMIA/COMPAY -2018. LNCS, vol. 11039, pp. 219–227. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00949-6_26

    Chapter  Google Scholar 

  27. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Tereshchenko, L.G., et al.: Infiltrated atrial fat characterizes underlying atrial fibrillation substrate in patients at risk as defined by the aric atrial fibrillation risk score. Int. J. Cardiol. 172(1), 196–201 (2014)

    Article  Google Scholar 

  29. Wei, L., Gan, Q., Ji, T.: Cervical cancer histology image identification method based on texture and lesion area features. Comput. Assist. Surg. 22(sup1), 186–199 (2017)

    Article  Google Scholar 

  30. Zhao, X., et al.: Integrated RFA/PSOCT catheter for real-time guidance of cardiac radio-frequency ablation. Biomed. Opt. Express 9(12), 6400–6411 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The study was funded in part by the National Institute of Health (4DP2HL127776-02 and 1R01HL149369-01, CPH), the National Science Foundation Career Award (1454365, CPH).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Z. et al. (2020). Heterogeneity Measurement of Cardiac Tissues Leveraging Uncertainty Information from Image Segmentation. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12261. Springer, Cham. https://doi.org/10.1007/978-3-030-59710-8_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59710-8_76

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59709-2

  • Online ISBN: 978-3-030-59710-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics