Skip to main content

Encoding Visual Attributes in Capsules for Explainable Medical Diagnoses

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12261))

Abstract

Convolutional neural network based systems have largely failed to be adopted in many high-risk application areas, including healthcare, military, security, transportation, finance, and legal, due to their highly uninterpretable “black-box” nature. Towards solving this deficiency, we teach a novel multi-task capsule network to improve the explainability of predictions by embodying the same high-level language used by human-experts. Our explainable capsule network, X-Caps, encodes high-level visual object attributes within the vectors of its capsules, then forms predictions based solely on these human-interpretable features. To encode attributes, X-Caps utilizes a new routing sigmoid function to independently route information from child capsules to parents. Further, to provide radiologists with an estimate of model confidence, we train our network on a distribution of expert labels, modeling inter-observer agreement and punishing over/under confidence during training, supervised by human-experts’ agreement. X-Caps simultaneously learns attribute and malignancy scores from a multi-center dataset of over 1000 CT scans of lung cancer screening patients. We demonstrate a simple 2D capsule network can outperform a state-of-the-art deep dense dual-path 3D CNN at capturing visually-interpretable high-level attributes and malignancy prediction, while providing malignancy prediction scores approaching that of non-explainable 3D CNNs. To the best of our knowledge, this is the first study to investigate capsule networks for making predictions based on radiologist-level interpretable attributes and its applications to medical image diagnosis. Code is publicly available at https://github.com/lalonderodney/X-Caps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afshar, P., Mohammadi, A., Plataniotis, K.N.: Brain tumor type classification via capsule networks. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 3129–3133. IEEE (2018)

    Google Scholar 

  2. Armato III, S., et al.: The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2), 915–931 (2011)

    Article  Google Scholar 

  3. Bloomberg, J.: Don’t Trust Artificial Intelligence? Time To Open The AI ‘Black Box’, (11162018), Forbes Magazine. http://www.forbes.com/sites/jasonbloomberg/2018/09/16/dont-trust-artificial-intelligence-time-to-open-the-ai-black-box/#6ceaf3793b4a

  4. Bologna, G.: A model for single and multiple knowledge based networks. Artif. Intell. Med. 28(2), 141–163 (2003)

    Article  Google Scholar 

  5. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Infogan: interpretable representation learning by information maximizing generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2172–2180 (2016)

    Google Scholar 

  6. Frankle, J., Carbin, M.: The lottery ticket hypothesis: finding sparse, trainable neural networks. arXiv preprint arXiv:1803.03635 (2018)

  7. Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.: Explaining explanations: an overview of interpretability of machine learning. In: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), pp. 80–89. IEEE (2018)

    Google Scholar 

  8. Hancock, M., Magnan, J.: Lung nodule malignancy classification using only radiologist-quantified image features as inputs to statistical learning algorithms. J. Med. Imaging 3(4), 044504 (2016)

    Article  Google Scholar 

  9. Hussein, S., Cao, K., Song, Q., Bagci, U.: Risk stratification of lung nodules using 3D CNN-based multi-task learning. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 249–260. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_20

    Chapter  Google Scholar 

  10. Hussein, S., Gillies, R., Cao, K., Song, Q., Bagci, U.: Tumornet: lung nodule characterization using multi-view convolutional neural network with gaussian process. In: 14th International Symposium on Biomedical Imaging (ISBI), pp. 1007–1010. IEEE (2017)

    Google Scholar 

  11. Iesmantas, T., Alzbutas, R.: Convolutional capsule network for classification of breast cancer histology images. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) ICIAR 2018. LNCS, vol. 10882, pp. 853–860. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93000-8_97

    Chapter  Google Scholar 

  12. Jiménez-Sánchez, A., Albarqouni, S., Mateus, D.: Capsule networks against medical imaging data challenges. In: Stoyanov, D., et al. (eds.) LABELS/CVII/STENT -2018. LNCS, vol. 11043, pp. 150–160. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01364-6_17

    Chapter  Google Scholar 

  13. Kandel, P., LaLonde, R., Ciofoaia, V., Wallace, M.B., Bagci, U.: Su1741 colorectal polyp diagnosis with contemporary artificial intelligence. Gastrointest. Endosc. 89(6), AB403 (2019)

    Google Scholar 

  14. Kuhn, M., Johnson, K.: Applied Predictive Modeling, vol. 26. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6849-3

    Book  MATH  Google Scholar 

  15. LaLonde, R., Bagci, U.: Capsules for object segmentation. arXiv preprint arXiv:1804.04241 (2018)

  16. LaLonde, R., Kandel, P., Spampinato, C., Wallace, M.B., Bagci, U.: Diagnosing colorectal polyps in the wild with capsule networks. In: 17th International Symposium on Biomedical Imaging (ISBI). IEEE (2020)

    Google Scholar 

  17. LaLonde, R., Xu, Z., Jain, S., Bagci, U.: Capsules for biomedical image segmentation. arXiv preprint arXiv:2004.04736 (2020)

  18. Lehnis, M.: Can We Trust AI If We Don’t Know How It Works? (15062018), BBC News. http://www.bbc.com/news/business-44466213

  19. Mobiny, A., Lu, H., Nguyen, H.V., Roysam, B., Varadarajan, N.: Automated classification of apoptosis in phase contrast microscopy using capsule network. IEEE Trans. Med. Imaging 39(1), 1–10 (2019)

    Article  Google Scholar 

  20. Mobiny, A., Van Nguyen, H.: Fast CapsNet for lung cancer screening. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 741–749. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_82

    Chapter  Google Scholar 

  21. Nibali, A., He, Z., Wollersheim, D.: Pulmonary nodule classification with deep residual networks. Int. J. Comput. Assist. Radiol. Surgery 1–10 (2017). https://doi.org/10.1007/s11548-017-1605-6

  22. Pal, A., Chaturvedi, A., Garain, U., Chandra, A., Chatterjee, R., Senapati, S.: CapsDeMM: capsule network for detection of munro’s microabscess in skin biopsy images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 389–397. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_44

    Chapter  Google Scholar 

  23. Polonski, V.: People Don’t Trust AI-Here’s How We Can Change That, (10012018), Scientific American. http://www.scientificamerican.com/article/people-dont-trust-ai-heres-how-we-can-change-that/

  24. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)

    Article  Google Scholar 

  25. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Advances in Neural Information Processing Systems, pp. 3856–3866 (2017)

    Google Scholar 

  26. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  27. Shen, S., Han, S.X., Aberle, D.R., Bui, A.A., Hsu, W.: An interpretable deep hierarchical semantic convolutional neural network for lung nodule malignancy classification. Expert Syst. Appl. 128, 84–95 (2019)

    Article  Google Scholar 

  28. Shen, W., Zhou, M., Yang, F., Yang, C., Tian, J.: Multi-scale convolutional neural networks for lung nodule classification. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 588–599. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19992-4_46

    Chapter  Google Scholar 

  29. Shen, W., et al.: Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification. Pattern Recogn. 61, 663–673 (2017)

    Article  Google Scholar 

  30. Shen, Y., Gao, M.: Dynamic routing on deep neural network for thoracic disease classification and sensitive area localization. In: Shi, Y., Suk, H.-I., Liu, M. (eds.) MLMI 2018. LNCS, vol. 11046, pp. 389–397. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00919-9_45

    Chapter  Google Scholar 

  31. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  32. Zhu, W., Liu, C., Fan, W., Xie, X.: Deeplung: deep 3D dual path nets for automated pulmonary nodule detection and classification. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 673–681. IEEE (2018)

    Google Scholar 

Download references

Acknowledgments

This project is partially supported by the NIH funding: R01-CA246704 and R01-CA240639.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney LaLonde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

LaLonde, R., Torigian, D., Bagci, U. (2020). Encoding Visual Attributes in Capsules for Explainable Medical Diagnoses. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12261. Springer, Cham. https://doi.org/10.1007/978-3-030-59710-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59710-8_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59709-2

  • Online ISBN: 978-3-030-59710-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics