Skip to main content

Gut Microbiome on Allergies

  • Chapter
  • First Online:
Gut Microbiome-Related Diseases and Therapies

Part of the book series: The Microbiomes of Humans, Animals, Plants, and the Environment ((MHAPE,volume 1))

  • 661 Accesses

Abstract

Allergy refers to a hypersensitivity reaction initiated by specific immunologic mechanisms. Different forms of allergic diseases include anaphylaxis, urticaria, angioedema, allergic rhinitis, rhinoconjunctivitis, allergic asthma, serum sickness, allergic vasculitis, hypersensitivity pneumonitis, atopic dermatitis (eczema), contact dermatitis and granulomatous reactions, and food- or drug-induced hypersensitivity reactions. Usually, allergies initiate during the first 3 months of life, while genetic background is of utmost significance. Environmental factors that differentiated in the past few decades, such us climate changes, increased atmosphere pollution, nutrition, and the use of caesarean section that affects microbial colonization, are believed to strongly influence the growing allergy rates. Changes in environment and diet produce dysbiosis in gut, skin, and/or lung microbiome, inducing significant changes in the microbiota, directly affecting the immunological mechanisms implicated in the prevention of allergic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aagaard K, et al. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6(237):237ra65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berni Canani R, et al. Gut microbiome as target for innovative strategies against food allergy. Front Immunol. 2019;10:191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bisgaard H, et al. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol. 2011;128(3):646–52.e1–5.

    Article  PubMed  Google Scholar 

  • Bloomfield SF, et al. Too clean, or not too clean: the hygiene hypothesis and home hygiene. Clin Exp Allergy. 2006;36(4):402–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carraro S, et al. Early-life origins of chronic respiratory diseases: understanding and promoting healthy ageing. Eur Respir J. 2014;44(6):1682–96.

    Article  PubMed  Google Scholar 

  • Castro-Rodriguez JA, et al. Effect of foods and Mediterranean diet during pregnancy and first years of life on wheezing, rhinitis and dermatitis in preschoolers. Allergol Immunopathol (Madr). 2016;44(5):400–9.

    Article  CAS  Google Scholar 

  • D’Amato G, et al. Asthma-related deaths. Multidiscip Respir Med. 2016;11:37.

    Article  PubMed  PubMed Central  Google Scholar 

  • De Martinis M, Sirufo MM, Ginaldi L. Allergy and aging: an old/new emerging health issue. Aging Dis. 2017;8(2):162–75.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunn AB, et al. The maternal infant microbiome: considerations for labor and birth. MCN Am J Matern Child Nurs. 2017;42(6):318–25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Durack J, et al. Delayed gut microbiota development in high-risk for asthma infants is temporarily modifiable by Lactobacillus supplementation. Nat Commun. 2018;9(1):707.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Evans SE, et al. Inducible innate resistance of lung epithelium to infection. Annu Rev Physiol. 2010;72:413–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flynn JM, et al. Evidence and role for bacterial mucin degradation in cystic fibrosis airway disease. PLoS Pathog. 2016;12(8):e1005846.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frati F, et al. The role of the microbiome in asthma: the gut(-)lung axis. Int J Mol Sci. 2018;20(1).

    Google Scholar 

  • Fujimura KE, Lynch SV. Microbiota in allergy and asthma and the emerging relationship with the gut microbiome. Cell Host Microbe. 2015;17(5):592–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galli SJ, Tsai M. IgE and mast cells in allergic disease. Nat Med. 2012;18(5):693–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Larsen V, et al. Diet during pregnancy and infancy and risk of allergic or autoimmune disease: a systematic review and meta-analysis. PLoS Med. 2018;15(2):e1002507.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grimshaw KE, et al. Diet and food allergy development during infancy: birth cohort study findings using prospective food diary data. J Allergy Clin Immunol. 2014;133(2):511–9.

    Article  PubMed  Google Scholar 

  • Hilty M, et al. Disordered microbial communities in asthmatic airways. PLoS One. 2010;5(1):e8578.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirsch AG, et al. Early-life antibiotic use and subsequent diagnosis of food allergy and allergic diseases. Clin Exp Allergy. 2017;47(2):236–44.

    Article  CAS  PubMed  Google Scholar 

  • Honda K, Littman DR. The microbiome in infectious disease and inflammation. Annu Rev Immunol. 2012;30:759–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YJ, et al. Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma. J Allergy Clin Immunol. 2011;127(2):372–381.e1–3.

    Article  PubMed  Google Scholar 

  • Huang YJ, et al. The microbiome in allergic disease: current understanding and future opportunities-2017 PRACTALL document of the American Academy of Allergy, Asthma & Immunology and the European Academy of Allergy and Clinical Immunology. J Allergy Clin Immunol. 2017;139(4):1099–110.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huffaker MF, Phipatanakul W. Utility of the Asthma Predictive Index in predicting childhood asthma and identifying disease-modifying interventions. Ann Allergy Asthma Immunol. 2014;112(3):188–90.

    Article  PubMed  Google Scholar 

  • Johansson SG, et al. Revised nomenclature for allergy for global use: report of the Nomenclature Review Committee of the World Allergy Organization, October 2003. J Allergy Clin Immunol. 2004;113(5):832–6.

    Article  CAS  PubMed  Google Scholar 

  • Kaliannan K, et al. A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia. Sci Rep. 2015;5:11276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koo H, et al. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol. 2017;15(12):740–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuruvilla ME, Lee FE, Lee GB. Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin Rev Allergy Immunol. 2019;56(2):219–33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lapin B, et al. The relationship of early-life antibiotic use with asthma in at-risk children. J Allergy Clin Immunol. 2014;134(3):728–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lluis A, et al. Increased regulatory T-cell numbers are associated with farm milk exposure and lower atopic sensitization and asthma in childhood. J Allergy Clin Immunol. 2014;133(2):551–9.

    Article  CAS  PubMed  Google Scholar 

  • Loh W, Tang MLK. The epidemiology of food allergy in the global context. Int J Environ Res Public Health. 2018;15(9).

    Google Scholar 

  • Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. 2009;294(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  • Markowiak P, Slizewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients. 2017;9(9).

    Google Scholar 

  • Medina M, et al. Nasal administration of Lactococcus lactis improves local and systemic immune responses against Streptococcus pneumoniae. Microbiol Immunol. 2008;52(8):399–409.

    Article  CAS  PubMed  Google Scholar 

  • Metsala J, et al. Mother’s and offspring’s use of antibiotics and infant allergy to cow’s milk. Epidemiology. 2013;24(2):303–9.

    Article  PubMed  Google Scholar 

  • Mileti E, et al. Comparison of the immunomodulatory properties of three probiotic strains of Lactobacilli using complex culture systems: prediction for in vivo efficacy. PLoS One. 2009;4(9):e7056.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murdoch JR, Lloyd CM. Chronic inflammation and asthma. Mutat Res. 2010;690(1–2):24–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murk W, Risnes KR, Bracken MB. Prenatal or early-life exposure to antibiotics and risk of childhood asthma: a systematic review. Pediatrics. 2011;127(6):1125–38.

    Article  PubMed  Google Scholar 

  • Myles IA. Allergy as a disease of dysbiosis: is it time to shift the treatment paradigm? Front Cell Infect Microbiol. 2019;9:50.

    Article  PubMed  PubMed Central  Google Scholar 

  • Netting MJ, Middleton PF, Makrides M. Does maternal diet during pregnancy and lactation affect outcomes in offspring? A systematic review of food-based approaches. Nutrition. 2014;30(11–12):1225–41.

    Article  CAS  PubMed  Google Scholar 

  • Osborne NJ, et al. Prevalence of challenge-proven IgE-mediated food allergy using population-based sampling and predetermined challenge criteria in infants. J Allergy Clin Immunol. 2011;127(3):668–76.e1–2.

    Article  CAS  PubMed  Google Scholar 

  • Ouwehand AC, et al. Differences in Bifidobacterium flora composition in allergic and healthy infants. J Allergy Clin Immunol. 2001;108(1):144–5.

    Article  CAS  PubMed  Google Scholar 

  • Pascal M, et al. Microbiome and allergic diseases. Front Immunol. 2018;9:1584.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perez-Munoz ME, et al. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome. 2017;5(1):48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Plunkett CH, Nagler CR. The influence of the microbiome on allergic sensitization to food. J Immunol. 2017;198(2):581–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Proud D, Leigh R. Epithelial cells and airway diseases. Immunol Rev. 2011;242(1):186–204.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez JM, et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis. 2015;26:26050.

    PubMed  Google Scholar 

  • Sandin A, et al. Faecal short chain fatty acid pattern and allergy in early childhood. Acta Paediatr. 2009;98(5):823–7.

    Article  PubMed  Google Scholar 

  • Schauber J, et al. Expression of the cathelicidin LL-37 is modulated by short chain fatty acids in colonocytes: relevance of signalling pathways. Gut. 2003;52(5):735–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan J, et al. Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Rep. 2016;15(12):2809–24.

    Article  CAS  PubMed  Google Scholar 

  • Tang ML, et al. Administration of a probiotic with peanut oral immunotherapy: a randomized trial. J Allergy Clin Immunol. 2015;135(3):737–44.e8.

    Article  CAS  PubMed  Google Scholar 

  • Teo SM, et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe. 2015;17(5):704–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tezuka H, Ohteki T. Regulation of IgA production by intestinal dendritic cells and related cells. Front Immunol. 2019;10:1891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vael C, et al. Early intestinal Bacteroides fragilis colonisation and development of asthma. BMC Pulm Med. 2008;8:19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vangay P, et al. Antibiotics, pediatric dysbiosis, and disease. Cell Host Microbe. 2015;17(5):553–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira AT, Fukumori C, Ferreira CM. New insights into therapeutic strategies for gut microbiota modulation in inflammatory diseases. Clin Transl Immunol. 2016;5(6):e87.

    Article  CAS  Google Scholar 

  • Walter J, Ley R. The human gut microbiome: ecology and recent evolutionary changes. Annu Rev Microbiol. 2011;65:411–29.

    Article  CAS  PubMed  Google Scholar 

  • Wesemann DR, Nagler CR. The microbiome, timing, and barrier function in the context of allergic disease. Immunity. 2016;44(4):728–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wills-Karp M. Allergen-specific pattern recognition receptor pathways. Curr Opin Immunol. 2010;22(6):777–82.

    Article  CAS  PubMed  Google Scholar 

  • Wopereis H, et al. The first thousand days – intestinal microbiology of early life: establishing a symbiosis. Pediatr Allergy Immunol. 2014;25(5):428–38.

    Google Scholar 

  • Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes. 2012;3(1):4–14.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Styliani, T. (2021). Gut Microbiome on Allergies. In: Gazouli, M., Theodoropoulos, G. (eds) Gut Microbiome-Related Diseases and Therapies. The Microbiomes of Humans, Animals, Plants, and the Environment, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-030-59642-2_10

Download citation

Publish with us

Policies and ethics