ProvNet: Networked Blockchain for Decentralized Secure Provenance

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12404)


Data sharing is increasingly popular especially for scientific research and business fields where large volume of datasets are usually required. People benefit from data sharing, but keeping track of the history of the shared data (i.e., provenance records) for monitoring and protecting them is not easy. On one hand, due to the decentralized nature of data sharing nowadays, it is impractical to have a centralized entity who collects all the provenance records. Some previous works that combined the data sharing with blockchain can store the provenance records of data sharing in a blockchain system. On the other hand, previous works focus on the scenario where malicious users will not modify the shared datasets and re-share them as the owner of these changed datasets. Besides, maintaining the correctness of collected records in the presence of malicious attackers is challenging. In this paper, we present ProvNet, a decentralized data sharing platform which can provide a secure and correct provenance record using a networked blockchain. All the valid sharing records will be collected and stored in a tamper-proof networked blockchain, named blocknet. Furthermore, ProvNet can also discover and detect the misbehaviors with the stored provenance records.


  1. 1.
    Open source blockchain technologies.
  2. 2.
    Abeyratne, S.A., Monfared, R.P.: Blockchain ready manufacturing supply chain using distributed ledger (2016)Google Scholar
  3. 3.
    Azaria, A., Ekblaw, A., Vieira, T., Lippman, A.: MedRec: using blockchain for medical data access and permission management. In: OBD, pp. 25–30. IEEE (2016)Google Scholar
  4. 4.
    Broder, A.Z.: On the resemblance and containment of documents. In: SEQUENCES, pp. 21–29. IEEE (1997)Google Scholar
  5. 5.
    Buneman, P., Khanna, S., Tan, W.-C.: Data provenance: some basic issues. In: Kapoor, S., Prasad, S. (eds.) FSTTCS 2000. LNCS, vol. 1974, pp. 87–93. Springer, Heidelberg (2000). Scholar
  6. 6.
    Cohen, E., et al.: Finding interesting associations without support pruning. IEEE Trans. Knowl. Data Eng. 13(1), 64–78 (2001)CrossRefGoogle Scholar
  7. 7.
    Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing scheme based on p-stable distributions. In: SoCG, pp. 253–262. ACM (2004)Google Scholar
  8. 8.
    Dziembowski, S., Eckey, L., Faust, S.: FairSwap: how to fairly exchange digital goods. In: CCS, pp. 967–984. ACM (2018)Google Scholar
  9. 9.
    Fan, K., Wang, S., Ren, Y., Li, H., Yang, Y.: MedBlock: efficient and secure medical data sharing via blockchain. J. Med. Syst. 42(8), 136 (2018). Scholar
  10. 10.
    Hamers, L., et al.: Similarity measures in scientometric research: the Jaccard index versus Salton’s cosine formula. Inf. Process. Manag. 25(3), 315–18 (1989)CrossRefGoogle Scholar
  11. 11.
    IBM: Cost of a data breach study.
  12. 12.
    Jung, T., et al.: AccountTrade: accountable protocols for big data trading against dishonest consumers. In: IEEE INFOCOM, pp. 1–9. IEEE (2017)Google Scholar
  13. 13.
    Jung, T., et al.: AccountTrade: accountability against dishonest big data buyers and sellers. IEEE Trans. Inf. Forensics Secur. 14(1), 223–234 (2018)CrossRefGoogle Scholar
  14. 14.
    Kang, J., et al.: Blockchain for secure and efficient data sharing in vehicular edge computing and networks. IEEE IoT J. (2018)Google Scholar
  15. 15.
    Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing for scalable image search. In: ICCV, vol. 9, pp. 2130–2137 (2009)Google Scholar
  16. 16.
    Leskovec, J., Krevl, A.: SNAP datasets: Stanford large network dataset collection, June 2014.
  17. 17.
    Liang, X., Shetty, S., Tosh, D., Kamhoua, C., Kwiat, K., Njilla, L.: ProvChain: a blockchain-based data provenance architecture in cloud environment with enhanced privacy and availability. In: CCGRID, pp. 468–477. IEEE Press (2017)Google Scholar
  18. 18.
    Liang, X., Zhao, J., Shetty, S., Liu, J., Li, D.: Integrating blockchain for data sharing and collaboration in mobile healthcare applications. In: PIMRC, pp. 1–5. IEEE (2017)Google Scholar
  19. 19.
    Muniswamy-Reddy, K.-K., Holland, D.A., Braun, U., Seltzer, M.I.: Provenance-aware storage systems. In: USENIX 2006, pp. 43–56 (2006)Google Scholar
  20. 20.
    Nakamoto, S., et al.: Bitcoin: a peer-to-peer electronic cash system (2008)Google Scholar
  21. 21.
    Neisse, R., Steri, G., Nai-Fovino, I.: A blockchain-based approach for data accountability and provenance tracking. In: ARES, p. 14. ACM (2017)Google Scholar
  22. 22.
    Nyaletey, E., Parizi, R.M., Zhang, Q., Choo, K.-K.R.: BlockIPFS-blockchain-enabled interplanetary file system for forensic and trusted data traceability. In: 2019 IEEE Blockchain, pp. 18–25. IEEE (2019)Google Scholar
  23. 23.
    Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm. In: USENIX ATC, vol. 14, pp. 305–319 (2014)Google Scholar
  24. 24.
    Popov, S.: The tangle. cit. on, p. 131 (2016)Google Scholar
  25. 25.
    Potthast, M., Barrón-Cedeño, A., Stein, B., Rosso, P.: Cross-language plagiarism detection. Lang. Resour. Eval. 45(1), 45–62 (2011)CrossRefGoogle Scholar
  26. 26.
    Ramachandran, A., Kantarcioglu, et al.: Using blockchain and smart contracts for secure data provenance management. arXiv preprint arXiv:1709.10000 (2017)
  27. 27.
    Real, R., Vargas, J.M.: The probabilistic basis of Jaccard’s index of similarity. Syst. Biol. 45(3), 380–385 (1996)CrossRefGoogle Scholar
  28. 28.
    Ruan, P., Chen, G., Dinh, T.T.A., Lin, Q., Ooi, B.C., Zhang, M.: Fine-grained, secure and efficient data provenance on blockchain systems. Proc. VLDB Endow. 12(9), 975–988 (2019)CrossRefGoogle Scholar
  29. 29.
    Shafagh, H., Burkhalter, L., Hithnawi, A., Duquennoy, S.: Towards blockchain-based auditable storage and sharing of IoT data. In: CCSW, pp. 45–50. ACM (2017)Google Scholar
  30. 30.
    Si, A., Leong, H.V., Lau, R.W.H.: Check: a document plagiarism detection system. In: SAC, vol. 97, pp. 70–77 (1997)Google Scholar
  31. 31.
    Singh, M., Kim, S.: Blockchain based intelligent vehicle data sharing framework. arXiv preprint arXiv:1708.09721 (2017)
  32. 32.
    Slaney, M., Casey, M.: Locality-sensitive hashing for finding nearest neighbors [lecture notes]. IEEE Sig. Process. Mag. 25(2), 128–131 (2008)CrossRefGoogle Scholar
  33. 33.
    Teixeira, C.H.C., Silva, A., Meira, W.: Min-hash fingerprints for graph kernels: a trade-off among accuracy, efficiency, and compression. J. Inf. Data Manag. 3(3), 227–227 (2012)Google Scholar
  34. 34.
    Van Hoye, L., Maenhaut, P.-J., Wauters, T., Volckaert, B., De Turck, F.: Logging mechanism for cross-organizational collaborations using hyperledger fabric. In: ICBC, pp. 352–359. IEEE (2019)Google Scholar
  35. 35.
    Xia, Q.I., et al.: MeDShare: trust-less medical data sharing among cloud service providers via blockchain. IEEE Access 5, 14757–14767 (2017)CrossRefGoogle Scholar
  36. 36.
    Zhang, O.Q., Ko, R.K.L., Kirchberg, M., Suen, C.H., Jagadpramana, P., Lee, B.S.: How to track your data: rule-based data provenance tracing algorithms. In: TrustCom, pp. 1429–1437. IEEE (2012)Google Scholar
  37. 37.
    Zhou, W., Fei, Q., Narayan, A., Haeberlen, A., Loo, B.T., Sherr, M.: Secure network provenance. In: SOSP, pp. 295–310. ACM (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringUniversity of Notre DameNotre DameUSA

Personalised recommendations