Skip to main content

Abstract

This chapter focuses on the gluten-induced dietary disorders, conceived therapies, and hysteria associated with wheat/gluten consumption. Gluten proteins are one of the most widely consumed dietary proteins in the world and also the sole source of nutrition to many, especially those dwelling in developing countries. Prevalence of these disorders has compounded in the last couple of decades due to change in lifestyle, which includes an adaptation of the gluten-laden diet and excessive use of antibiotics in childhood with a suppressive effect on the development of the immune system and the improvements in diagnostics. Several therapies have been sought, but none of them has proven perfect. The issues associated with gluten-induced disorders and existing and possible therapies and prospects will be discussed under the following headings and subheadings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altenbach SB, Allen PV (2011) Transformation of the US bread wheat “Butte 86” and silencing of omega-5 gliadin genes. GM Crops 2:66–73

    Article  PubMed  Google Scholar 

  • Altenbach SB, Kothari KM, Dao L (2002) Environmental conditions during wheat grain development alter temporal regulation of major gluten protein genes. J Cereal Chem 79:279–285

    Article  CAS  Google Scholar 

  • Altenbach SB, Tanaka CK, Seabourn BW (2014) Silencing of omega-5 gliadins in transgenic wheat eliminates a major source of environmental variability and improves dough mixing properties of flour. BMC Plant Biol 14:1

    Article  PubMed Central  CAS  Google Scholar 

  • Altenbach SB, Chang H-C, Yu XB, Seabourn BW, Green PH, Alaedini A (2019) Elimination of omega-1,2 gliadins from bread wheat (Triticum aestivum) flour: effects on immunogenic potential and end-use quality. Front Plant Sci 10:580

    Article  PubMed  PubMed Central  Google Scholar 

  • Amaya-Gonzalez S, De-Los-Santos-Alvarez N, Miranda-Ordieres AJ, Lobo-Castanon MJ (2014) Aptamer binding to celiac disease-triggering hydrophobic proteins: a sensitive gluten detection approach. Anal Chem 86:2733–2739

    Article  CAS  PubMed  Google Scholar 

  • Amaya-Gonzalez S, De-Los-Santos-Alvarez N, Miranda-Ordieres AJ, Lobo-Castanon MJ (2015) Sensitive gluten determination in gluten-free foods by an electrochemical aptamer-based assay. Anal Bioanal Chem 407:6021–6029

    Article  CAS  PubMed  Google Scholar 

  • Ames NP, Clarke JM, Dexter JE, Woods SM, Selles F, Marchylo B (2003) Effects of nitrogen fertilizer on protein quantity and gluten strength parameters in durum wheat (Triticum turgidum L. var.durum) cultivars of variable gluten strength. J Cereal Chem 80:203–211

    Article  CAS  Google Scholar 

  • Aziz I, Hadjivassiliou M, Sanders DS (2015) The spectrum of noncoeliac gluten sensitivity. Nat Rev Gastroenterol Hepatol 12:516–526

    Article  CAS  PubMed  Google Scholar 

  • Bai JC, Fried M, Corazza GR, Schuppan D, Farthing M et al (2013) World gastroenterology organisation global guidelines on celiac disease. J Clin Gastroenterol 47:121–126

    Article  PubMed  Google Scholar 

  • Balakireva AV, Zamyatnin AA (2016) Properties of gluten intolerance: gluten structure, evolution, pathogenicity and detoxification capabilities. Nutrients 8:E644

    Article  PubMed  CAS  Google Scholar 

  • Barbeau WE, Schwarzlaff SS, Uriyo MG, Johnson JM, Harris CH, Griffey CA (2003) Origin and practical significance of the sticky dough factor in 1BL/1RS wheats. J Sci Food Agric 83:29–38

    Article  CAS  Google Scholar 

  • Becker D, Folck A (2006) Inhibierung der α-Gliadingeneexpression in hexaploiden Brotweizen. Getreidetechnologie 30:153–156

    Google Scholar 

  • Becker D, Folck A, Knies P, Lörz H, Wieser H (2006) Silencing the a-gliadins in hexaploid bread wheat. In: Lookhart LG, Ng WPK (eds) Gluten proteins. AACC International, St Paul, pp 86–89

    Google Scholar 

  • Becker D, Wieser H, Koehler P, Folck A, Mühling KH, Zörb C (2012) Protein composition and techno-functional properties of transgenic wheat with reduced α-gliadin content obtained by RNA interference. J Appl Bot Food Qual 85:23–33

    CAS  Google Scholar 

  • Berezovski M, Musheev M, Drabovich A, Jitkova J, Krylov S (2006) Non-SELEX: selection of aptamers without intermediate amplification of candidate oligonucleotides. Nat Protoc 1:1359–1369

    Article  CAS  PubMed  Google Scholar 

  • Bethune MT, Khosla C (2008) Parallels between pathogens and gluten peptides in celiac sprue. PLoS Pathog 4:e34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bethune MT, Strop P, Tang Y, Sollid LM, Khosla C (2006) Heterologous expression, purification, refolding, and structural-functional characterization of EP-B2, a self-activating barley cysteine endoprotease. Chem Biol 13:637–647

    Article  CAS  PubMed  Google Scholar 

  • Blumenthal CS, Barlow EWR, Wrigley CW (1993) Growth environment and wheat quality: the effect of heat stress on dough properties and gluten proteins. J Cereal Sci 18:3–21

    Article  CAS  Google Scholar 

  • Brouns F, van Buul VJ, Shewry PR (2013) Does wheat make us fat and sick? J Cereal Sci 58:209–215

    Article  Google Scholar 

  • Brouns F, Van Rooy G, Shewry P, Rustgi S, Jonkers D (2019) Adverse reactions to wheat or wheat components. Compr Rev Food Sci Food Saf. https://doi.org/10.1111/1541-4337.12475

  • Camafeita E, Alfonso P, Lopez JA, Sorell L, Mendez E (1997) Sample preparation optimization for the analysis of gliadins in food by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mass Spectrom 32:444–449

    Article  CAS  Google Scholar 

  • Camafeita E, Solis J, Alfonso P, Lopez JA, Sorell L, Mendez E (1998) Selective identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of different types of gluten in foods made with cereal mixtures. J Chromatogr A 823:299–306

    Article  CAS  PubMed  Google Scholar 

  • Cambra I, Hernández D, Diaz I, Martinez M (2012) Structural basis for specificity of propeptide-enzyme interaction in barley C1A cysteine peptidases. PLoS One 7:e37234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cappetta M, Roth I, Díaz A, Tort J, Roche L (2002) Role of the prosegment of Fasciola hepatica cathepsin L1 in folding of the catalytic domain. Biol Chem 383:1215–1221

    Article  CAS  PubMed  Google Scholar 

  • Ciaffi M, Tozzi L, Borghi B, Corbellini M, Lafiandra D (1996) Effect of heat shock during grain filling on the gluten protein composition of bread wheat. J Cereal Sci 24:91–100

    Article  CAS  Google Scholar 

  • Ciclitira PJ, Lennox ES, Hunter JO (1980a) Clinical testing of bread made from nullisomic-6A wheats in celiac patients. Lancet 2:234–236

    Article  CAS  PubMed  Google Scholar 

  • Ciclitira PJ, Hunter JO, Lennox ES (1980b) Clinical testing in celiac patients of bread made from wheats deficient in some alpha-gliadins. Clin Sci 59:25

    Article  Google Scholar 

  • Colomba MS, Gregorini A (2012) Are ancient durum wheats less toxic to celiac patients? A study of α-gliadin from Graziella Ra and Kamut. Sci World J 2012:837416

    Article  CAS  Google Scholar 

  • Comino I, Moreno M, Real A, Rodríguez-Herrera A, Barro F, Sousa C (2013) The gluten-free diet: testing alternative cereals tolerated by celiac patients. Nutrients 5:4250–4268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da Sacco L, Baldassarre A, Masotti A (2013) Diet’s role in the toxicity of inorganic arsenic (iAs): a journey from soil to children’s mouth. J Geochem Explor 131:45–51

    Article  CAS  Google Scholar 

  • De Vita P, Ficco DBM, Luciani A, Vincentini O, Pettoello-Mantovani M, Silano M, Maiuri L, Cattivelli L (2012) A ω-secalin contained decamer shows a celiac disease prevention activity. J Cereal Sci 55:234–242

    Article  CAS  Google Scholar 

  • Delcour JA, Joye IJ, Pareyt B, Wilderjans E, Brijs K, Lagrain B (2012) Wheat gluten functionality as a quality determinant in cereal-based food products. Annu Rev Food Sci Technol 3:469–492

    Article  CAS  PubMed  Google Scholar 

  • Denčić S, Mladenov N, Kobiljski B (2011) Effects of genotype and environment on breadmaking quality in wheat. Int J Plant Prod 5:71–82

    Google Scholar 

  • Dewar DH, Amato M, Ellis HJ, Pollock EL, Gonzalez-Cinca N, Wieser H, Ciclitira PJ (2006) The toxicity of high molecular weight glutenin subunits of wheat to patients with coeliac disease. Eur J Gastroenterol Hepatol 18:483–491

    Article  CAS  PubMed  Google Scholar 

  • Dubois B, Bertin P, Hautier L, Muhovski Y, Escarnot E, Mingeot D (2018) Genetic and environmental factors affecting the expression of α-gliadin canonical epitopes involved in celiac disease in a wide collection of spelt (Triticum aestivum ssp. spelta) cultivars and landraces. BMC Plant Biol 18:262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis HJ, Doyle AP, Wieser H, Sturgress RP, Day P, Ciclitira PJ (1994) Measurement of gluten using a monoclonal antibody to a sequenced peptide of α-gladian from the coeliac-activating domain I. J Biochem Biophys Methods 28:77–82

    Article  CAS  PubMed  Google Scholar 

  • Fasano A (2009) Surprises from celiac disease. Sci Am 301:54–61

    Article  CAS  PubMed  Google Scholar 

  • Frisoni M, Corazza GR, Lafiandra D, De Ambroggio E, Filipponi C et al (1995) Wheat deficient in gliadins: promising tool for coeliac disease. Gut 36:375–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gass J, Khosla C (2007) Prolyl endopeptidases. Cell Mol Life Sci 64:345–355

    Article  CAS  PubMed  Google Scholar 

  • Georget DMR, Underwood-Toscano C, Powers SJ, Shewry PR, Belton PS (2008) Effect of variety and environmental factors on gluten proteins: an analytical, spectroscopic and rheological study. J Agric Food Chem 56:1172–1179

    Article  CAS  PubMed  Google Scholar 

  • Gianfrani C, Maglio M, Rotondi Aufiero V, Camarca A, Vocca I et al (2012) Immunogenicity of monococcum wheat in celiac patients. Am J Clin Nutr 96:1339–1345

    Article  CAS  PubMed  Google Scholar 

  • Gianibelli MC, Larroque OR, MacRitchie F, Wrigley CW (2001) Biochemical, genetic, and molecular characterization of wheat glutenin and its component subunits. Cereal Chem 78:635–646

    Google Scholar 

  • Giese H, Hopp HE (1984) Influence of nitrogen nutrition on the amount of hordein, protein z and α-amylase messenger RNA in developing endosperms of barley. Carlsberg Res Commun 49:365–383

    Article  CAS  Google Scholar 

  • Gil-Humanes J, Piston F, Hernando A, Alvarez JB, Shewry PR, Barro F (2008) Silencing of γ-gliadins by RNA interference (RNAi) in bread wheat. J Cereal Sci 48:565–568

    Article  CAS  Google Scholar 

  • Gil-Humanes J, Piston F, Tollefsen S, Sollid LM, Barro F (2010) Effective shutdown in the expression of celiac disease-related wheat gliadin T-cell epitopes by RNA interference. Proc Natl Acad Sci USA 107:17023–17028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil-Humanes J, Piston F, Shewry PR, Tosi P, Barro F (2011) Suppression of gliadins results in altered protein body morphology in wheat. J Exp Bot 62:4203–4213

    Article  CAS  PubMed  Google Scholar 

  • Gil-Humanes J, Piston F, Gimenez MJ, Martin A, Barro F (2012a) The introgression of RNAi silencing of γ-gliadins into commercial lines of bread wheat changes the mixing and technological properties of the dough. PLoS One 9:e45937

    Article  CAS  Google Scholar 

  • Gil-Humanes J, Piston F, Rosell CM, Barro F (2012b) Significant down-regulation of γ-gliadins has minor effect on gluten and starch properties of bread wheat. J Cereal Sci 56:161–170

    Article  CAS  Google Scholar 

  • Gil-Humanes J, Piston F, Altamirano-Fortoul R, Real A, Comino I et al (2014a) Reduced-gliadin wheat bread: an alternative to the gluten-free diet for consumers suffering gluten-related pathologies. PLoS One 9:e90898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gil-Humanes J, Piston F, Barro F, Rosell CM (2014b) The shutdown of celiac disease-related gliadin epitopes in bread wheat by RNAi provides flours with increased stability and better tolerance to over-mixing. PLoS One 9:e91931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gilissen LJWJ, van der Meer IM, Smulders MJM (2014) Reducing the incidence of allergy and intolerance to cereals. J Cereal Sci 59:337–353

    Article  CAS  Google Scholar 

  • Gobaa S, Bancel E, Kleijer G, Stamp P, Branlard G (2007) Effect of the 1BL.1RS translocation on the wheat endosperm, as revealed by proteomic analysis. Proteomics 7:4349–4357

    Article  CAS  PubMed  Google Scholar 

  • Godfrey D, Hawkesford MJ, Powers SJ, Millar S, Shewry PR (2010) Effects of crop nutrition on wheat grain composition and end use quality. J Agric Food Chem 58:3012–3021

    Article  CAS  PubMed  Google Scholar 

  • Golley S, Corsini N, Topping D, Morell M, Mohr P (2015) Motivations for avoiding wheat consumption in Australia: results from a population survey. Public Health Nutr 18:490–499

    Article  PubMed  Google Scholar 

  • Goryunova SV, Salentijn EM, Chikida NN, Kochieva EZ, van der Meer IM, Gilissen LJ, Smulders MJM (2012) Expansion of the gamma-gliadin family in Aegilops and Triticum. BMC Evol Biol 12:215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregorini A, Colomba M, Ellis HJ, Ciclitira PJ (2009) Immunogenicity characterization of two ancient wheat α-gliadin peptides related to coeliac disease. Nutrients 1:276–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann G, Koehler P, Wieser H (2006) Rapid degradation of gliadin peptides toxic for coeliac disease patients by proteases from germinating cereals. J Cereal Sci 44:368–371

    Article  CAS  Google Scholar 

  • Henterich N, Osman AA, Mendez E, Mothes T (2003) Assay of gliadins by real time immunopolymerase chain reaction. Nahrung 47:345–348

    Article  CAS  PubMed  Google Scholar 

  • Hopman E, Dekking L, Blokland ML, Wuisman M, Zuijderduin W, Koning F, Schweizer J (2008) Tef in the diet of celiac patients in The Netherlands. Scand J Gastroenterol 43:277–282

    Article  CAS  PubMed  Google Scholar 

  • Hurkman WJ, Tanaka CK, Vensel WH, Thilmony R, Altenbach SB (2013) Comparative proteomic analysis of the effect of temperature and fertilizer on gliadin and glutenin accumulation in the developing endosperm and flour from Triticum aestivum L. cv. Butte 86. J Proteome Sci 11:8

    Article  CAS  Google Scholar 

  • Iametti S, Bonomi F, Ferranti P, Picariello G, Gabrovska D (2005) Characterization of gliadin content in beer by using different approaches. In: Stern M (ed) Proceedings of the 19th meeting of working group on Prolamin analysis and toxicity. Verlag Wissenschaftliche Scripten, Zwickau, pp 73–78.

    Google Scholar 

  • Iametti S, Bonomi F, Ferranti P, de Martino A, Picariello G (2006) Characterization of peptides and proteins in beer by using different approaches. In Stern M (ed) Proceedings of the 20th meeting of working group on Prolamin analysis and toxicity. Verlag Wissenschaftliche Scripten, Zwickau, pp 47–52

    Google Scholar 

  • Järvan M, Edesi L, Adamson A, Lukme L, Akk A (2008) The effect of Sulphur fertilization on yield, quality of protein and baking properties of winter wheat. Agronomy Res 6:459–469

    Google Scholar 

  • Jing Q, Jiang D, Dai T, Cao W (2003) Effects of genotype and environment on wheat grain quality and protein components. J Appl Ecol 14:1649–1653

    CAS  Google Scholar 

  • Johansson E, Prieto-Linde ML, Jönsson JÖ (2001) Effects of wheat cultivar and nitrogen application on storage protein composition and bread-making quality. Cereal Chem 78:19–25

    Article  CAS  Google Scholar 

  • Johansson E, Prieto-Linde ML, Svensson G (2004) Influence of nitrogen application rate and timing on grain protein composition and gluten strength in Swedish wheat cultivars. J Sci Food Agri 167:345–350

    Google Scholar 

  • Jouanin A, Boyd L, Visser RGF, Smulders MJM (2018) Development of wheat with hypoimmunogenic gluten obstructed by the gene editing policy in Europe. Front Plant Sci 9:1523

    Article  PubMed  PubMed Central  Google Scholar 

  • Jouanin A, Schaart JG, Boyd LA, Cockram J, Leigh FJ, Bates R, Wallington EJ, Visser RGF, Smulders MJM (2019) Outlook for coeliac disease patients: towards bread wheat with hypoimmunogenic gluten by gene editing of α- and γ-gliadin gene families. BMC Plant Biol 19:333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Juhász A, Belova T, Florides CG, Maulis C, Fischer I et al (2018) Genome mapping of seed-borne allergens and immunoresponsive proteins in wheat. Sci Adv 4:eaar8602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kasarda DD (2007) Letter to the editor: Triticum monococcum and celiac disease. Scand J Gastroenterol 42:1141–1142

    Article  PubMed  Google Scholar 

  • Koning F (2012) Celiac disease: quantity matters. Seminars Immunopathol 34:541–549

    Article  CAS  Google Scholar 

  • Koppel E, Stadler M, Luthy J, Hubner P (1998) Detection of wheat contamination in oats by polymerase chain reaction (PCR) and enzyme-linked immumosorbent assay (ELISA). Z Lebensm Untersuch Forsch 206:399–403

    Article  Google Scholar 

  • Krejčířová L, Capouchová I, Petr J, Bicanová E, Faměra O (2008) The effect of organic and conventional growing systems on quality and storage protein composition of winter wheat. Plant Soil Environ 53:499–505

    Article  Google Scholar 

  • Landriscina L, D’Agnello P, Bevilacqua A, Corbo MR, Sinigaglia M, Lamacchia C (2017) Impact of gluten-friendly™ technology on wheat kernel endosperm and gluten protein structure in seeds by light and electron microscopy. Food Chem 221:1258–1268

    Article  CAS  PubMed  Google Scholar 

  • Langridge P (2017) Achieving sustainable cultivation of wheat: breeding, quality traits, pests and diseases. Burleigh Dodds Science Publishing, Cambridge

    Book  Google Scholar 

  • Liu P, Guo WS, Xu YM, Feng CN, Zhu XK, Peng YX (2006) Effect of planting density on grain yield and quality of weak-gluten and medium-gluten. Wheat J Triticecae S512:1

    Google Scholar 

  • López-López L, Miranda-Castro R, De-los-Santos-Alvarez N, Miranda-Ordieres AJ, Lobo-Castanon MJ (2017) Disposable electrochemical aptasensor for gluten determination in food. Sensors Actuators B Chem 241:522–527

    Article  CAS  Google Scholar 

  • Lukaszewski AJ (2015) Introgressions between wheat and rye. In: Molnár-Láng M, Ceoloni C, Doležel J (eds) Alien introgression in wheat. Springer, Cham, pp 163–190

    Chapter  Google Scholar 

  • Malvano F, Albanese D, Pilloton R, Matteo MD (2017) A new label-free impedimetric aptasensor for gluten detection. Food Control 79:200–206

    Article  CAS  Google Scholar 

  • Matsuda T, Nakase M, Alvarez AM, Izumi H, Kato T, Tada Y (2006) Rice-seed allergenic proteins and hypoallergenic rice. In: Mine Y, Shahidi F (eds) Nutraceutical proteins and peptides in health and disease. CRC Press, Hoboken, pp 493–511

    Google Scholar 

  • McCarville JL, Caminero A, Verdu EF (2015) Celiac treatments, adjuvant therapies and alternatives to the gluten-free diet. In: Arranz E, Fernández-Bañares F, Rosell CM, Rodrigo L, Peña AS (eds) Advances in the understanding of gluten related pathology and the evolution of gluten-free foods. OmniaScience, Barcelona, pp 223–253

    Chapter  Google Scholar 

  • Mitea C, Salentijn EM, van Veelen P, Goryunova SV, van der Meer IM et al (2010) A universal approach to eliminate antigenic properties of alpha-gliadin peptides in celiac disease. PloS One 5:e15637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molberg Ø, Uhlen AK, Jensen T, Flæte NS, Fleckenstein B et al (2005) Mapping of gluten T-cell epitopes in the bread wheat ancestors: implications for celiac disease. Gasteroenterology 128:393–401

    Article  CAS  Google Scholar 

  • Müller M, Knudsen S (1993) The nitrogen response of a barley C-hordein promoter is controlled by positive and negative regulation of the GCN4 and endosperm box. Plant J4:343–355

    Google Scholar 

  • Muller S, Wieser H (1995) The location of disulfide bonds in alpha-type gliadins. J Cereal Sci 22:21–27

    Article  Google Scholar 

  • Muller S, Wieser H (1997) The location of disulphide bonds in monomeric gamma-type gliadins. J Cereal Sci 26:169–176

    Article  CAS  Google Scholar 

  • Munck L (1992) The case of high-lysine barley breeding. In: Shewry PR (ed) Barley: genetics, biochemistry, molecular biology and biotechnology. CAB International, Wallingford, pp 573–601

    Google Scholar 

  • Munera-Picazo S, Ramirez-Gandolfo A, Burlo F, Carbonell-Barrachina AA (2014) Inorganic and total arsenic contents in rice-based foods for children with celiac disease. J Food Sci 79:T122–T128

    Article  CAS  PubMed  Google Scholar 

  • Nambu M (2006) Rice allergy. Pediatrics 117:2331

    Article  PubMed  Google Scholar 

  • Ortiz-Sánchez JP, Cabrera-Chávez F, de la Barca AM (2013) Maize prolamins could induce a gluten-like cellular immune response in some celiac disease patients. Nutrients 5:4174–4183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osborne TB (1907) The proteins of the wheat kernel. Carnegie Institute, Washington

    Book  Google Scholar 

  • Osorio C, Wen N, Gemini R, Zemetra R, von Wettstein D, Rustgi S (2012) Targeted modification of wheat grain protein to reduce the content of coeliac causing epitopes. Funct Integr Genomics 12:417–438

    Article  CAS  PubMed  Google Scholar 

  • Osorio CE, Mejías JH, Rustgi S (2019a) Gluten detection methods and their critical role in assuring safe diets for celiac patients. Nutrients 11:2920

    Google Scholar 

  • Osorio C, Wen N, Mejias JH, Liu B, Reinbothe S, von Wettstein D, Rustgi S (2019b) Development of wheat genotypes expressing a glutamine-specific endoprotease from barley and a prolyl endopeptidase from Flavobacterium meningosepticum or Pyrococcus furiosus as a potential remedy to coeliac disease. Funct Integr Genomics 19:123–136

    Article  CAS  PubMed  Google Scholar 

  • Ozturk A, Aydin F (2004) Effect of water stress at various growth stages on some quality characteristics of winter wheat. J Agron Crop Sci 190:93–99

    Article  Google Scholar 

  • Panda R, Taylor SL, Goodman RE (2010) Development of a sandwich enzyme-linked immunosorbent assay (ELISA) for detection of buckwheat residues in food. J Food Sci 75:T110–T117

    Article  CAS  PubMed  Google Scholar 

  • Peltonen J, Karvonen T, Kivi E (1990) The effect of climatic factors on production of spring wheat quantity to quality ratio in southern Finland. Agric Food Sci 62:227–236

    Article  Google Scholar 

  • Pinto A, Polo PN, Henry O, Redondo MCB, Svobodova M, O’Sullivan CK (2014) Label-free detection of gliadin food allergen mediated by real-time apta-PCR. Anal Bioanal Chem 406:515–524

    Article  CAS  PubMed  Google Scholar 

  • Piston F, Gil-Humanes J, Rodríguez-Quijano M, Barro F (2011) Down-regulating γ-gliadins in bread wheat leads to non-specific increases in other gluten proteins and has no major effect on dough gluten strength. PLoS One 6:e24754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pizzuti D, Buda A, D’Odorico A, D’Incà R, Chiarelli S, Curioni A, Martines D (2006) Lack of intestinal mucosal toxicity of Triticum monococcum in coeliac disease patients. Scand J Gastroenterol 41:1305–1311

    Article  CAS  PubMed  Google Scholar 

  • Pogna NE, Monari AM, Cacciatori P, Redaelli R, Ng PKW (1998) Development and characterization of bread wheat lines lacking chromosome 1B-, 1D-, 6A- and 6D-encoded prolamins. In: Proceedings of the IXth international wheat genetics symposium. Saskatoon, Saskatchewan, Canada, pp 265–268

    Google Scholar 

  • Pontieri P, Mamone G, De Caro S, Tuinstra MR, Roemer E et al (2013) Sorghum, a healthy and gluten-free food for celiac patients as demonstrated by genome, biochemical, and immunochemical analyses. J Agric Food Chem 61:2565–2571

    Article  CAS  PubMed  Google Scholar 

  • Rashtak S, Murray JA (2012) Review article: coeliac disease, new approaches to therapy. Aliment Pharmacol Ther 35:768–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro M, Nunes FM, Rodriguez-Quijano M, Carrillo JM, Branlard G, Igrejas G (2018) Next-generation therapies for celiac disease: the gluten-targeted approaches. Trends Food Sci Technol 75:56–71

    Article  CAS  Google Scholar 

  • Rosella CM, Barro F, Sousa C, Mena MC (2014) Cereals for developing gluten-free products and analytical tools for gluten detection. J Cereal Sci 59:354–364

    Article  CAS  Google Scholar 

  • Rumbo M, Chirdo FG, Fossati CA, Anon MC (2001) Analysis of the effect of heat treatment on gliadin immunochemical qualification using a panel of anti-prolamin antibodies. J Agric Food Chem 49:5719–5726

    Article  CAS  PubMed  Google Scholar 

  • Rustgi S, Wen N, Osorio C, Brew-Appiah RAT, Wen S et al (2014) Natural dietary therapies for the ‘gluten syndrome’. Scientia Danica Series B Biol 3:1–87

    Google Scholar 

  • Rustgi S, Shewry P, Brouns F, Deleu LJ, Delcour JA (2019) Wheat seed proteins – factors influencing their content, composition, and technological properties, and strategies to reduce adverse reactions. Compr Rev Food Sci Food Saf 18:1751–1769

    Google Scholar 

  • Salentijn EMJ, Esselink DG, Goryunova SV, van der Meer IM, Gilissen L, Smulders MJM (2013) Quantitative and qualitative differences in celiac disease epitopes among durum wheat varieties identified through deep RNA-amplicon sequencing. BMC Genomics 14:16

    Article  CAS  Google Scholar 

  • Sánchez-León S, Gil-Humanes J, Ozuna CV, Giménez MJ, Sousa C, Voytas DF, Barro F (2018) Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J 16:902–910

    Article  PubMed  CAS  Google Scholar 

  • Sapone A, Bai JC, Ciacci C, Dolinsek J, Green PH, Hadjivassiliou M, Kaukinen K, Rostami K, Sanders DS, Schumann M, Ullrich R, Villalta D, Volta U, Catassi C, Fasano A (2012) Spectrum of gluten-related disorders: consensus on new nomenclature and classification. BMC Med 10:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Saturni L, Ferretti G, Bacchetti T (2010) The gluten-free diet: safety and nutritional quality. Nutrients 2:16–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherf KA, Poms RE (2016) Recent developments in analytical methods for tracing gluten. J Cereal Sci 67:112–122

    Article  CAS  Google Scholar 

  • Schilling K, Körner A, Sehmisch S, Kreusch A, Kleint R et al (2009) Selectivity of propeptide-enzyme interaction in cathepsin L-like cysteine proteases. Biol Chem 390:167–174

    Article  CAS  PubMed  Google Scholar 

  • Schuppan D, Junker Y, Barisani D (2009) Celiac disease: from pathogenesis to novel therapies. Gastroenterology 137:1912–1933

    Article  CAS  PubMed  Google Scholar 

  • Schwarzlaff SS, Uriyo MG, Johnson JM, Barbeau WE, Griffey CA (2001) Apparent dough stickiness of selected 1BL/1RS translocated soft wheat flours. Cereal Chem 78:93–96

    Article  CAS  Google Scholar 

  • Sestak K, Thwin H, Dufour J, Aye PP, Liu DX, Moehs CP (2015) The effects of reduced gluten barley diet on humoral and cell-mediated systemic immune responses of gluten-sensitive Rhesus macaques. Nutrients 7:1657–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shewry PR (2011) Effects of nitrogen and sulfur nutrition on grain composition and properties of wheat and related cereals. In: Hawkesford MJ, Barraclough P (eds) The molecular and physiological basis of nutrient use efficiency in crops. Wiley-Blackwell, Chichester, pp 103–120

    Chapter  Google Scholar 

  • Shewry PR (2018) Do ancient types of wheat have health benefits compared with modern bread wheat? J Cereal Sci 79:469–476

    Article  PubMed  PubMed Central  Google Scholar 

  • Shewry PR (2019) What is gluten – why is it special? Front Nutr 6:101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shewry PR, Tatham AS, Forde J, Kreis M, Miflin BJ (1986) The classification and nomenclature of wheat gluten proteins: a reassessment. J Cereal Sci 4:97–106

    Article  CAS  Google Scholar 

  • Shewry PR, Halford NG, Tatham AS (1992) High-molecular-weight subunits of wheat glutenin. J Cereal Sci 15:105–120

    Article  CAS  Google Scholar 

  • Shewry PR, D’Ovidio R, Lafiandra D, Jenkins JA, Mills ENC, Bekes F (2009) Wheat grain proteins. In: Khan K, Shewry PR (eds) Wheat: chemistry and technology, 4th edn. AACC International, St. Paul, pp 223–298

    Chapter  Google Scholar 

  • Singh S, Gupta A, Kaur N (2012) Influence of drought and sowing time on protein composition, antinutrients, and mineral contents of wheat. Sci World 2012:1–9

    Google Scholar 

  • Skoczowski A, Obtułowicz K, Czarnobilska E, Dyga W, Mazur M, Stawoska I, Waga J (2017) Antibody reactivity in patients with IgE-mediated wheat allergy to various subunits and fractions of gluten and non-gluten proteins from ω-gliadin-free wheat genotypes. Ann Agric Environ Med 24:229–236

    Article  CAS  PubMed  Google Scholar 

  • Skodje GI, Sarna VK, Minelle IH, Rolfsen KL, Muir JG et al (2018) Fructan, rather than gluten, induces symptoms in patients with self-reported non-celiac gluten sensitivity. Gastroenterology 154:529–539

    Article  CAS  PubMed  Google Scholar 

  • Sollid LM, Khosla C (2011) Novel therapies for coeliac disease. J Intern Med 269:604–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song K, Lee S, Ban C (2012) Aptamers and their biological applications. Sensors 12:612–631

    Article  PubMed  PubMed Central  Google Scholar 

  • Spaenij-Dekking L, Kooy-Winkelaar Y, Koning F (2005) The Ethiopian cereal tef in celiac disease. N Engl J Med 353:1748–1749

    Article  CAS  PubMed  Google Scholar 

  • Stember RH (2006) Buckwheat allergy. Allergy Asthma Proc 27:393–395

    Article  PubMed  Google Scholar 

  • Stenman SM, Venalainen JI, Lindfors K, Auriola S, Mauriala T et al (2009) Enzymatic detoxification of gluten by germinating wheat proteases: implications for new treatment of celiac disease. Ann Med 41:390–400

    Article  CAS  PubMed  Google Scholar 

  • Tanner GJ, Blundell MJ, Colgrave ML, Howitt CA (2016) Creation of the first ultra-low gluten barley (Hordeum vulgare L.) for coeliac and gluten-intolerant populations. Plant Biotechnol J 14:1139–1150

    Article  CAS  PubMed  Google Scholar 

  • Tatham AS, Shewry PR (2008) Allergens to wheat and related cereals. Clin Exp Allergy 38:1712–1726

    CAS  PubMed  Google Scholar 

  • Trcka J, Schäd SG, Scheurer S, Conti A, Vieths S, Gross G, Trautmann A (2012) Rice-induced anaphylaxis: IgE-mediated allergy against a 56-kDa glycoprotein. Int Arch Allergy Immunol 158:9–17

    Article  CAS  PubMed  Google Scholar 

  • Tye-Din JA, Stewart JA, Dromey JA, Beissbarth T, van Heel DA, Tatham A, Henderson K, Mannering SI, Gianfrani C, Jewell DP, Hill AV, McCluskey J, Rossjohn J, Anderson RP (2010) Comprehensive, quantitative mapping of T cell epitopes in gluten in celiac disease. Sci Transl Med 2:41ra51

    Article  PubMed  CAS  Google Scholar 

  • Vaccino P, Becker HA, Brandolini A, Salamini F, Kilian B (2009) A catalogue of Triticum monococcum genes encoding toxic and immunogenic peptides for celiac disease patients. Mol Genet Genomics 281:289–300

    Article  CAS  PubMed  Google Scholar 

  • van den Broeck HC, van Herpen TW, Schuit C, Salentijn EM, Dekking L et al (2009) Removing celiac disease-related gluten proteins from bread wheat while retaining technological properties: a study with Chinese spring deletion lines. BMC Plant Biol 9:41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van den Broeck HC, Hongbing C, Lacaze X, Dusautoir J-C, Gilissen L, Smulders M, van der Meer I (2010a) In search of tetraploid wheat accessions reduced in celiac disease-related gluten epitopes. Mol BioSyst 6:2206–2213

    Article  PubMed  CAS  Google Scholar 

  • van den Broeck HC, de Jong HC, Salentijn EMJ, Dekking L, Bosch D et al (2010b) Presence of celiac disease epitopes in modern and old hexaploid wheat varieties: wheat breeding may have contributed to increased prevalence of celiac disease. Theor Appl Genet 121:527–1539

    Google Scholar 

  • van den Broeck HC, Gilissen LJWJ, Smulders MJM, van der Meer IM, Hamer RJ (2011) Dough quality of bread wheat lacking alpha-gliadins with celiac disease epitopes and addition of celiac-safe avenins to improve dough quality. J Cereal Sci 53:206–216

    Article  CAS  Google Scholar 

  • Van Herpen TWJM, Goryunova S, van der Schoot J, Mitreva M, Salentijn EMJ et al (2006) Alpha-gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes. BMC Genomics 7:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Venske E, dos Santos RS, Busanello C, Gustafson P, de Oliveira AC (2019) Bread wheat: a role model for plant domestication and breeding. Hereditas 156:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Veraverbeke WS, Delcour JA (2002) Wheat protein composition and properties of wheat glutenin in relation to breadmaking functionality. Crit Rev Food Sci Nutr 42:179–208

    Article  CAS  PubMed  Google Scholar 

  • Verbeke K (2018) Non-celiac gluten sensitivity: What is the culprit? Gastroenterology 154:471–473

    Article  PubMed  Google Scholar 

  • Waga J, Skoczowski A (2014) Development and characteristics of ω-gliadin-free wheat genotypes. Euphytica 195:105–116

    Article  CAS  Google Scholar 

  • Weiser H, Seilmeier W (2003) Determination of gliadin and gluten in wheat starch by means of alcohol extraction and gel permeation chromatography. In: Stern M (ed) Proceedings of the 17th meeting of working group on prolamin analysis and toxicity. Verlag Wissenschaftliche Scripten, Zwickau, pp 53–57

    Google Scholar 

  • Wen S, Wen N, Pang J, Langen G, Brew-Appiah RAT et al (2012) Structural genes of wheat and barley 5-methylcytosine DNA glycosylases and their potential applications for human health. Proc Natl Acad Sci USA 109:20543–20548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wieser H, Seilmeier S (1998) The influence of nitrogen fertilisation on quantities and proportions of different protein types in wheat flour. J Sci Food Agric 76:49–55

    Article  CAS  Google Scholar 

  • Wieser H, Gutser R, Tucher SV (2004) Influence of Sulphur fertilization on quantities and proportions of gluten protein types in wheat flour. J Cereal Sci 40:239–244

    Article  CAS  Google Scholar 

  • Wieser H, Koehler P, Folck A, Becker D (2006) Characterization of wheat with strongly reduced α-gliadin content. In: Lookhart GL (ed) Gluten proteins 2006. C.H.I.P.S., Weimar, pp 13–16

    Google Scholar 

  • Zannini E, Pontonio E, Waters DM, Arendt EK (2012) Applications of microbial fermentations for production of gluten-free products and perspectives. Appl Microbiol Biotechnol 93:473–485

    Article  CAS  PubMed  Google Scholar 

  • Zecevic V, Knezevic D, Boskovic J, Madic M (2009) Effect of genotype and environment on wheat quality. Genetika 41:247–253

    Article  Google Scholar 

  • Zevallos VF, Ellis HJ, Suligoj T, Herencia LI, Ciclitira PJ (2012) Variable activation of immune response by quinoa (Chenopodium quinoa Willd.) prolamins in celiac disease. Am J Clin Nutr 96:337–344

    Article  CAS  PubMed  Google Scholar 

  • Zevallos VF, Herencia LI, Chang FJ, Donnelly S, Ellis HJ, Ciclitira PJ (2014) Gastrointestinal effects of eating quinoa (Chenopodium quinoa Willd.) in celiac patients. Am J Gastroenterol 109:270–278

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Li C, Jiang Z, Huang L, Feng C, Guo W, Peng Y (2012) Responses of phosphorus use efficiency, grain yield, and quality to phosphorus application amount of weak-gluten wheat. J Integr Agric 11:1103–1110

    Article  CAS  Google Scholar 

  • Zou TX, Dai TB, Jiang D, Qi J, Cao WX (2006) Effects of nitrogen and potassium supply on grain yield and quality in weak gluten wheat. J Triticeae Crops S512:1

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Clemson Faculty Succeeds Grant and NIFA Hatch/Multi-state grant (S009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Rustgi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rustgi, S., Kashyap, S., Deleu, L.J., Delcour, J.A. (2021). Reduced-Immunogenicity Wheat Now Coming to Age. In: Wani, S.H., Mohan, A., Singh, G.P. (eds) Physiological, Molecular, and Genetic Perspectives of Wheat Improvement. Springer, Cham. https://doi.org/10.1007/978-3-030-59577-7_2

Download citation

Publish with us

Policies and ethics