Skip to main content

Abstract

Wheat is a major food source for people around the world. During the last decade, an increase in wheat productivity has been observed with the development of novel varieties by using a combination of mutational and molecular breeding approaches. Despite this progress, several environmental factors including biotic and abiotic stresses negatively affect wheat productivity; these include the emergence of new pests and pathogens, global climate change and multiple environmental issues. Keeping all these challenges in mind, there is an urgent need to produce more amount of wheat to alleviate hunger of large and rapidly growing population. In the recent past, advances in genomics and genome editing technologies by the use of engineered nucleases have brought revolution in the field of agriculture. Among several different genome-modifying tools, the CRISPR/Cas9 system is the recent and widely used genome modification tool because it is simple and highly efficient technology. CRISPR/CAS9 along with its variants has immense potential to develop new wheat varieties with higher yield potential. In the present review, we will shed light on the application of genome editing to overcome major challenges and the assessment of its future implications for the improvement of wheat grains, both qualitatively and quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altenbach SB, Allen PV (2011) Transformation of the US bread wheat ‘Butte 86’ and silencing of omega-5 gliadin genes. GM Crops 2:67–74

    Article  Google Scholar 

  • Anjum FM, Khan MR, Din A, Saeed M, Pasha I, Arshad MU (2007) Wheat gluten: high molecular weight glutenin subunits structure, genetics, and relation to dough elasticity. J Food Sci 72(3):R56–R63

    Article  CAS  PubMed  Google Scholar 

  • Appels R, Eversole K, Feuillet C et al (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361(6403). https://doi.org/10.1126/science.aar7191

  • Baltes NJ, Voytas DF (2015) Enabling plant synthetic biology through genome engineering. Trends Biotechnol 33(2):120–131

    Article  CAS  PubMed  Google Scholar 

  • Barro F, Iehisa JC, Gimenez MJ et al (2016) Targeting of prolamins by RNAi in bread wheat: effectiveness of seven silencing-fragment combinations for obtaining lines devoid of coeliac disease epitopes from highly immunogenic gliadins. Plant Biotechnol J 14(3):986–996

    Article  CAS  PubMed  Google Scholar 

  • Bednarek J, Boulafous A, Girousse et al (2012) Down-regulation of the TaGW2 gene by RNA interference results in decreased grain size and weight in wheat. J Exp Bot 63(16):5945–5955

    Article  CAS  PubMed  Google Scholar 

  • Begemann MB, Gray BN, January E et al (2017) Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases. Sci Rep 7:11606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76–84

    Article  CAS  PubMed  Google Scholar 

  • Bhalla PL, Sharma A, Singh MB (2017) Enabling molecular technologies for trait improvement in wheat in wheat biotechnology. Method Mol Biol:3–24

    Google Scholar 

  • Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436

    Article  CAS  PubMed  Google Scholar 

  • Borisjuk N, Kishchenko O, Eliby S, Schramm C, Anderson P, Jatayev S, Kurishbayev A, Shavrukov Y(2019) Genetic modification for wheat improvement: from transgenesis to genome editing. BioMed Res Int Article ID 6216304|18 pages. https://doi.org/10.1155/2019/6216304

  • Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52

    Article  CAS  PubMed  Google Scholar 

  • Brandt KM, Gunn HM, Buschke BL, Heesacker A, Moretti N, Karasev A, Zemetra RS (2017) Testing non-transgenic CRISPR technology for wheat improvement. Presentation. 13th IWGS – Tulln, Austria

    Google Scholar 

  • Brooks C, Nekrasov V, Lippman ZB, Van Eck J (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPRassociated9 system. Plant Physiol 166(3):1292–1297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cabral AL, Jordan MC, Larson G, Somers DJ, Humphreys DG, McCartney CA (2018) Relationship between QTL for grain shape, grain weight, test weight, milling yield, and plant height in the spring wheat cross RL4452/‘AC domain’. PLoS One 13(1):e0190681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai Y, Chen L, Liu X, Sun S, Wu C, Jiang B et al (2015) CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS One 10(8):e0136064. https://doi.org/10.1371/journal.pone.0136064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cakmak I, Ozkan H, Braun HJ, Welch RM, Romheld V (2000) Zinc and iron concentrations in seeds of wild, primitive, and modern wheat. Food Nutr Bull 21(4):401–403

    Article  Google Scholar 

  • Capecchi MR (1980) High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22:479–488

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M et al (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17(7):1140–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Char SN, Neelakandan AK, Nahampun H, Frame B, Main M, Spalding MH et al (2017) An agrobacterium delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol J 15(2):257–268

    Article  CAS  PubMed  Google Scholar 

  • Cheng RR, Kong ZX, Zhang LW, Xie Q, Jia HY, Yu D, Huang YL, Ma ZQ (2017) Mapping QTLs controlling kernel dimensions in a wheat intervarietal RIL mapping population. Theor Appl Genet 130:1405–1414

    Article  PubMed  Google Scholar 

  • Connorton JM, Jones ER, Rodríguez-Ramiro I, Fairweather-Tait S, Uauy C, Balk J (2017) Wheat vacuolar iron transporter TaVIT2 transports Fe and Mn and is effective for biofortification. Plant Physiol 174:2434–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crespo-Herrera LA, Crossa J, Huerta-Espino J, Vargas M, Monda S, Velu G et al (2018) Genetic gains for grain yield in CIMMYT’s semi-arid wheat yield trials grown in suboptimal environments. Crop Sci 58:1890–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui X, Balcerzak M, Schernthaner J, Babic V, Datla R, Brauer EK, Labbé N, Subramaniam R, Ouelle T (2019) An optimized CRISPR/Cas9 protocol to create targeted mutations in homoeologous genes and an efficient genotyping protocol to identify edited events in wheat. Plant Methods 15:119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtin SJ, Voytas DF, Stupar RM (2012) Genome engineering of crops with designer nucleases. Plant Genome 5:42–50

    Article  CAS  Google Scholar 

  • Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering With CRISPR-Cas9. Science 346(6213):1258096. https://doi.org/10.1126/science.1258096

    Article  CAS  PubMed  Google Scholar 

  • Edae EA, Byrne PF, Haley SD, Lopes MS, Reynolds MP (2014) Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theor Appl Genet 127:791–807

    Article  CAS  PubMed  Google Scholar 

  • Endo A et al (2016) Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Sci Rep 6:38169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil-Humanes J, Piston F, Gimenez MJ et al (2012) The introgression of RNAi silencing of 𝛾-gliadins into commercial lines of bread wheat changes the mixing and technological properties. PLoS One 7(9):e45937. https://doi.org/10.1371/journal.pone.0045937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godoy J, Gizaw S, Chao S, Blake N, Carter A, Cuthbert R, Dubcovsky J, Hucl P, Kephart K, Pozniak C et al (2018) Genome-wide association study of agronomic traits in a spring-planted north American elite hard red spring wheat panel. Crop Sci 58(5):1838–1852

    Article  CAS  Google Scholar 

  • Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet 106(6):1032–1040

    Article  CAS  PubMed  Google Scholar 

  • Gupta M, Dekelver RC, Palta A, Clifford C, Gopalan S, Miller JC, Novak S, Desloover D, Gachott E, Connell J (2012) Transcriptional activation of Brassica napus B-ketoacyl-ACP synthase ll with an engineered zinc finger protein transcription factor. Plant Biotechnol J 10:783–791

    Article  CAS  PubMed  Google Scholar 

  • Hamada H, Liu Y, Nagira Y, Miki R, Taoka N, Imai R (2018) Biolistic-delivery- based transient CRISPR/CAS9 expression enables in planta genome editing in wheat. Sci Rep 8:14422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He X, Qu B, Li W et al (2015) The nitrate-inducible NAC transcription factor TaNAC2-5A controls nitrate response and increases wheat yield. Plant Physiol 169(3):1991–2005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holm PB, Kristiansen KN, Pedersen HB (2002) Transgenic approaches in commonly consumed cereals to improve iron and zinc content and bioavailability. J Nutr 132(3):514S–516S

    Article  PubMed  Google Scholar 

  • Hong Y, Chen L, Du L et al (2014) Transcript suppression of TaGW2 increased grain width and weight in bread wheat. Funct Integr Genomics 14(2):341–349

    Article  CAS  PubMed  Google Scholar 

  • Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170

    Article  CAS  PubMed  Google Scholar 

  • Hu M, Zhao X, Liu Q et al (2018) Transgenic expression of plastidic glutamine synthetase increases nitrogen uptake and yield in wheat. Plant Biotechnol J 6(11):1858–1867

    Article  CAS  Google Scholar 

  • Ismagul A, Yang N, Maltseva E et al (2018) A biolistic method for high-throughput production of transgenic wheat plants with single gene insertions. BMC Plant Biol 18:135–143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15(1):16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jahani M, Mohammadi-Nejad G, Nakhoda B, Rieseberg LH (2019) Genetic dissection of epistatic and QTL by environment interaction effects in three bread wheat genetic backgrounds for yield related traits under saline conditions. Euphytica 215:103

    Article  CAS  Google Scholar 

  • Jasin M, Liang F (1996) Ku80-deficient cells exhibit excess degradation of extrachromosomal DNA. J Biol Chem 271:14405–14411

    Article  PubMed  Google Scholar 

  • Jin H, Wen WE, Liu JD, Zhai SN, Zhang Y, Yan J, Liu ZY, Xia XC, He ZH (2016) Genome wide QTL mapping for wheat processing quality parameters in a Gaocheng 8901/ Zhoumai 16 recombinant inbred line population. Front Plant Sci 7:1032

    Article  PubMed  PubMed Central  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S et al (2014) Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343(6176):1247997. https://doi.org/10.1126/science.1247997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jouanin A, Schaart G, Boyd LA, Cockram J, Leigh FJ, Bates R, Wallington EJ, Visser RGF, Smulders MJM (2019) Outlook for coeliac disease patients: towards bread wheat with hypoimmunogenic gluten by gene editing of α- and γ-gliadin gene families. BMC Plant Biol 19:333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kelliher T, Starr D, Richbourg L et al (2017) MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542(7639):105–109

    Article  CAS  PubMed  Google Scholar 

  • Khatodia S, Bhatotia K, Passricha N, Khurana SM, Tuteja N (2016) The CRISPR/Cas genome-editing tool: application in improvement of crops. Front Plant Sci 7:506

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim D, Alptekin B, Budak H (2017) CRISPR/Cas9 genome editing in wheat. Funct Integr Genomics 18:31–34

    Article  CAS  PubMed  Google Scholar 

  • Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double stranded DNA cleavage. Nature 533:420–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Jain S, Elias EM, Ibrahim M, Sharma LK. (2018) An Overview of QTL Identification and Marker-Assisted Selection for Grain Protein Content in Wheat. In: Sengar R, Singh A. (eds) Eco-friendly Agro-biological Techniques for Enhancing Crop Productivity. Springer, Singapore. https://doi.org/10.1007/978-981-10-6934-5_11

  • Li Y, Song Y, Zhou R, Branlard G, Jia J (2009) Detection of QTLs for bread-making quality in wheat using a recombinant inbred line population. Plant Breed 128(3):235–243

    Article  Google Scholar 

  • Li J, Norville J, Aach J et al (2013) Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31(8):688–691. https://doi.org/10.1038/nbt.2654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li FJ, Wen WE, He ZH, Liu JD, Jin H, Geng HW, Yan J, Zhang PZ, Wan YX, Xia XC (2018a) Genome-wide linkage mapping of yield related traits in three Chinese bread wheat populations using high-density SNP markers. Theor Appl Genet 131:1903–1924

    Article  PubMed  Google Scholar 

  • Li Y, Song G, Gao J et al (2018b) Enhancement of grain number per spike by RNA interference of cytokinin oxidase 2 gene in bread wheat. Hereditas 155(33)

    Google Scholar 

  • Liang Z, Chen K, Li T et al (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu YN, He ZH, Appels R, Xia XC (2012) Functional markers in wheat: current status and future prospects. Theor Appl Genet 125:1–10

    Article  CAS  PubMed  Google Scholar 

  • Liu JD, He ZH, Rasheed A, Wen WE, Yan J, Zhang PZ, Wan YX, Zhang Y, Xie CJ, Xia XC (2017) Genome-wide association mapping of black point reaction in common wheat (Triticum aestivum L.). BMC Plant Biol 17:220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma W, Sutherland MW, Kammholz S, Banks P, Brennan P, Bovill W et al (2007) Wheat flour protein content and water absorption analysis in a doubled haploid population. J Cereal Sci 45(3):302–308

    Article  CAS  Google Scholar 

  • Meenu M, Xu B (2018) A critical review on anti-diabetic and anti-obesity effects of dietary resistant starch. Crit Rev Food Sci Nutr 30:1–13

    Google Scholar 

  • Montenegro JD, Golicz AA, Bayer PE et al (2017) The pan genome of hexaploid bread wheat. Plant J 90(5):1007–1013

    Article  CAS  PubMed  Google Scholar 

  • Mussolino C, Alzubi J, Fine EJ, Morbitzer R, Cradick TJ, Lahaye T, Bao G, Cathomen T (2014) TALENS facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acid Res 42:6762–6773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myers ZA, Holt BF III (2018) Nuclear factor-Y: still complex after all these years? Curr Opin Plant Biol 45:96–102

    Article  CAS  PubMed  Google Scholar 

  • Nadolska-Orczyk A, Rajchel IK, Orczyk W, Gasparis S (2017) Major genes determining yield-related traits in wheat and barley. Theor Appl Genet 130(6):1081–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31(8):691

    Article  CAS  PubMed  Google Scholar 

  • Pan C, Ye L, Qin L, Liu X, He Y, Wang J et al (2016) CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci Rep 6:24765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peña PA, Quach T, Sato S et al (2017) Expression of the maize Dof1 transcription factor in wheat and sorghum. Front Plant Sci 8(434)

    Google Scholar 

  • Puchta H (2016) Using CRISPR/Cas in three dimensions: towards synthetic plant genomes, transcriptomes and epigenomes. Plant J Cell Mol Biol 87:5–15

    Article  CAS  Google Scholar 

  • Qin N, Xu W, Hu L et al (2016) Drought tolerance and proteomics studies of transgenic wheat containing the maize C4 phosphoenolpyruvate carboxylase (PEPC) gene. Protoplasma 253(6):1503–1512

    Article  CAS  PubMed  Google Scholar 

  • Qu B, He X, Wang J et al (2015) A wheat CCAAT box-binding transcription factor increases the grain yield of wheat with less fertilizer input. Plant Physiol 167(2):411–423

    Article  CAS  PubMed  Google Scholar 

  • Ramirez CL, Foley JE, Wright DA, Muller F, Lerch SH, Rahman SH, Cornu TI, Winfrey RJ, Fu F, Townsend JA (2008) Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods 5:374–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasheed A, Wen WE, Gao FM, Zhai SN, Jin H, Liu JD, Guo Q, Zhang Y, Dreisigacker S, Xia XC, He ZH (2016) Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet 129:1843–1860

    Article  CAS  PubMed  Google Scholar 

  • Regina A, Bird A, Topping D et al (2006) High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc Natl Acad Sci U S A 103(10):3546–3551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth DB, Menetski JP, Nakajima PB, Bosma MJ, Gellert M (1992) V(D)J recombination: broken DNA molecules with covalently sealed (hairpin) coding ends in scid mouse thymocytes. Cell 70(6):983–991

    Article  CAS  PubMed  Google Scholar 

  • Sakuma S, Golan G, Guo ZF et al (2019) Unleashing floret fertility in wheat through the mutation of a homeobox gene. PNAS 116:5182–5187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Leon S, Gil-Humanes J, Ozuna CV et al (2018) Low gluten, non transgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J 16(4):902–910

    Article  CAS  PubMed  Google Scholar 

  • Schaart JG, van de Wiel CC, Lotz LA, Smulders MJ (2016) Opportunities for products of new plant breeding techniques. Trends Plant Sci 21:438–449

    Article  CAS  PubMed  Google Scholar 

  • Sestili F, Janni M, Doherty A et al (2010) Increasing the amylose content of durum wheat through silencing of the SBEIIa genes. BMC Plant Biol 10(144)

    Google Scholar 

  • Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31(8):686

    Article  CAS  PubMed  Google Scholar 

  • Shan Q, Wang Y, Li J, Gao C (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9:2395–2410

    Article  CAS  PubMed  Google Scholar 

  • Sharma RC, Crossa J, Velu G, Huerta-Espino J, Vargas M, Payne TS et al (2012) Genetic gains for grain yield in CIMMYT spring bread wheat across international environments. Crop Sci 52:1522–1533

    Article  Google Scholar 

  • Shiferaw B, Braun HJ, Duveiller E, Duveiller E, Reynolds MP, Muricho G (2013) Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Sec 5(3):291–317

    Article  Google Scholar 

  • Shrawat AK, Armstrong CL (2018) Development and application of genetic engineering for wheat improvement. Crit Rev Plant Sci 37(5):335–421

    Article  Google Scholar 

  • Shu QY, Forster BP, Nakagawa H (eds) (2012) Plant mutation breeding and biotechnology. CAB International, Cambridge, MA, pp 453–463

    Google Scholar 

  • Singh M, Kumar M, Albertsen MC, Young JK, Cigan M (2018) Concurrent modifications in the three homeologs of Ms45 gene with CRISPR-Cas9 lead to rapid generation of male sterile bread wheat (Triticum aestivum L.). Plant Mol Biol 97(4–5):371–383

    Article  CAS  PubMed  Google Scholar 

  • Smidansky ED, Meyer FD, Blakeslee B, Weglarz TE, Greene TW, Giroux MJ (2007) Expression of a modified ADP-glucose pyrophosphorylase large subunit in wheat seeds stimulates photosynthesis and carbon metabolism. Planta 225(4):965–976

    Article  CAS  PubMed  Google Scholar 

  • Sourdille P, Perretant MR, Charmet G, Leroy P, Gautier MF, Joudrier P et al (1996) Linkage between RFLP markers and genes affecting kernel hardness in wheat. Theor Appl Genet 93(4):580–586

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Hu Z, Chen R, Jiang Q, Song G, Zhang H et al (2015) Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep 5:10342

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Li J, Xia L (2016) Precise genome modification via sequence specific nuclease mediated gene targeting for crop improvement. Front Plant Sci 7:1928

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun C, Zhang F, Yan X, Zhang X, Dong Z, Cui D et al (2017) Genome-wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the Yellow and Huai Valley of China. Plant Biotechnol J 15(8):953–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svitashev S, Schwartz C, Lenderts B, Young JK, Cigan AM (2016) Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat Commun 7:13274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tassy C, Partier A, Beckert M, Feuillet C, Barret P (2014) Biolistic transformation of wheat: increased production of plants with simple insertions and heritable transgene expression. P C TOC 119(1):171–181

    CAS  Google Scholar 

  • Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High frequency modification of plant genes using engineered zinc finger nucleases. Nature 459:442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trevino F, Zhang F (2014) Genome editing using Cas9 nickases. Methods Enzymol 546C:161–174

    Article  CAS  Google Scholar 

  • Turner AS, Bradburne RP, Fish L, Snape JW (2004) New quantitative trait loci influencing grain texture and protein content in bread wheat. J Cereal Sci 40(1):51–60

    Article  CAS  Google Scholar 

  • Uauy C (2017) Plant genomics: unlocking the genome of wheat’s progenitor. Curr Biol 27(20):R1122–R1124

    Article  CAS  PubMed  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314(5803):1298–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valluru R, Reynolds MP, Davies WJ, Sukumaran S (2017) Phenotypic and genome wide association analysis of spike ethylene in diverse wheat genotypes under heat stress. New Phytol 214:271–283

    Article  CAS  PubMed  Google Scholar 

  • Vanamee E, Santagata AK, Aggarwal AK (2001) Fok1 requires two specific sites for cleavage. J Mol Biol 309:69–78

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Zhang S, Wang W, Xiong X, Meng F, Cui X (2015) Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Rep 34(9):1473–1476

    Article  CAS  PubMed  Google Scholar 

  • Wang M et al (2017) Multiplex gene editing in rice using the CRISPR-Cpf1 system. Mol Plant Published online

    Google Scholar 

  • Wang W, Pan Q, He F, Akhunova A, Chao S, Trick H, Akhunov E (2018a) Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. CRISPR J 1(1):65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Simmonds J, Pan Q et al (2018b) Gene editing and mutagenesis reveal inter-cultivar differences and additivity in the contribution of TaGW2 homoeologues to grain size and weight in wheat. Theor Appl Genet 131(11):2463–2475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Pan Q, Tian B, He F, Chen Y, Bai G, Akhunova A, Trick HN, Akhunov E (2019) Gene editing of the wheat homologs of TONNEAU1- recruiting motif encoding gene affects grain shape and weight in wheat. Plant J 100(2):251–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weeks DP, Spalding MH, Yang B (2016) Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotechnol J 14:483–495

    Article  CAS  PubMed  Google Scholar 

  • Weichert N, Saalbach I, Weichert H et al (2010) Increasing sucrose uptake capacity of wheat grains stimulates storage protein synthesis. Plant Physiol 152(2):698–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weichert H, Högy P, Mora-Ramirez L, Fuchs J, Eggert K, Koehler P, Weschke W, Fangmeier A, Weber H (2017) Grain yield and quality responses of wheat expressing a barley sucrose transporter to combined climate change factors. J Exp Bot 68(20):5511–5525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welch RM, Graham RD (1999) A new paradigm for world agriculture: meeting human needs: productive, sustainable, nutritious. Field Crops Res 60(1–2):1–10

    Article  Google Scholar 

  • Xu R, Qin R, Li H, Li D, Li L, Wei P et al (2017) Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnol J 15:713–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav D, Shavrukov Y, Bazanova N et al (2015) Constitutive overexpression of the TaNF-YB4 gene in transgenic wheat significantly improves grain yield. J Exp Bot 66(21):6635–6650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Q, Cong L, He G et al (2007) Optimization of wheat co transformation procedure with gene cassettes resulted in an improvement in transformation frequency. Mol Biol Rep 34:61–67

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Zhu D, Ma C et al (2018) Transcriptome analysis reveals key differentially expressed genes involved in wheat grain development. Crop J 4(2):92–106

    Article  Google Scholar 

  • Yue S, Li H, Li Y et al (2008) Generation of transgenic wheat lines with altered expression levels of 1Dx5 high-molecular weight glutenin subunit by RNA interference. J Cereal Sci 47(2):153–161

    Article  CAS  Google Scholar 

  • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Xu W, Wang H et al (2014) Pyramiding expression of maize genes encoding phosphoenolpyruvate carboxylase (PEPC) and pyruvate orthophosphate dikinase (PPDK) synergistically improve the photosynthetic characteristics of transgenic wheat. Protoplasma 251(5):1163–1173

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Liang Z, Zong Y et al (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 25(7):12617. https://doi.org/10.1038/ncomms12617

    Article  CAS  Google Scholar 

  • Zhang Y, Bai Y, Wu G, Zou S, Chen Y, Gao C, Tang D (2017) Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J 91(4):714–724

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Hua L, Gupta A, et al (2019) Development of an Agrobacterium‐delivered CRISPR/Cas9 system for wheat genome editing. Plant Biotechnol J, 17: 1623–1635. https://doi.org/10.1111/pbi.13088

  • Zhao D, Derkx AP, Liu D, Buchner P, Hawkesford MJ, Flemetakis E (2015) Overexpression of a NAC transcription factor delays leaf senescence and increases grain nitrogen concentration in wheat. Electron J Plant Biol 17(4):904–913

    Article  CAS  Google Scholar 

  • Zong Y, Wang Y, Li C et al (2017) Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35(5):438–440

    Article  CAS  PubMed  Google Scholar 

  • Zong Y, Song Q, Li C et al (2018) Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat Biotechnol 36:950–953

    Article  CAS  Google Scholar 

  • Zorb C, Ludewig U, Hawkesford MJ (2018) Perspective on wheat yield and quality with reduced nitrogen supply. Trends Plant Sci 23(11):1029–1037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bansal, M., Jindal, S., Wani, S.H., Ganie, S.A., Singh, R. (2021). Genome Editing and Trait Improvement in Wheat. In: Wani, S.H., Mohan, A., Singh, G.P. (eds) Physiological, Molecular, and Genetic Perspectives of Wheat Improvement. Springer, Cham. https://doi.org/10.1007/978-3-030-59577-7_12

Download citation

Publish with us

Policies and ethics