Skip to main content

Superhydrophobic Polymer/Nanoparticle Hybrids

  • Chapter
  • First Online:
Materials with Extreme Wetting Properties

Abstract

Superhydrophobic coatings and surfaces are being one of the most interesting topics in the past few decades due to the use of the surfaces for wider industrial applications. Superhydrophobic surface property can be easily produced by generating micro-nano hierarchical surface morphology covered with a thin layer of low surface energy materials. Generally, polymers, nanoparticles, or combination of both polymer and nanoparticles is used widely for the fabrication of superhydrophobic surfaces. In this sense, nanoparticles play a vital role for the development of micro-nano hierarchical surface morphology, whereas polymer can produce the dual behavior of micro-nano hierarchical surface morphology and low surface energy layer on the surface. The combination of both polymer and nanoparticles can make the development of the required surface property easier. In this chapter, we briefly describe the role of various polymers and nanoparticles that are adopted to produce superhydrophobic surface property and their wider usage in various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xue C-H, Jia S-T, Zhang J, Ma J-Z. Large-area fabrication of superhydrophobic surfaces for practical applications: an overview. Sci Technol Adv Mater. 2010;11:033002.

    Article  Google Scholar 

  2. Nagappan S, Park SS, Ha C-S. Recent advances in superhydrophobic nanomaterials and nanoscale systems. J Nanosci Nanotechnol. 2014;14:1441–62.

    Article  CAS  Google Scholar 

  3. Avramescu RE, Ghica MV, Dinu-Pîrvu C, Prisada R, Popa L. Superhydrophobic natural and artificial surfaces—a structural approach. Materials. 2018;11:866.

    Article  CAS  Google Scholar 

  4. Wen G, Guo Z, Liu W. Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications. Nanoscale. 2017;9:3338–66.

    Article  CAS  Google Scholar 

  5. Ganesh VA, Raut HK, Nair AS, Ramakrishna S. A review on self-cleaning coatings. J Mater Chem. 2011;21:16304–22.

    Article  CAS  Google Scholar 

  6. Wenzel RN. Surface roughness and contact angle. J Phys Colloid Chem. 1949;53:1466–7.

    Article  CAS  Google Scholar 

  7. Ha C-S, Nagappan S. Hydrophobic and superhydrophobic organic-inorganic nano-hybrids. Singapore: Pan Stanford Publishing; 2018. p. 1.

    Google Scholar 

  8. Sahoo BN, Kandasubramanian B. Recent progress in fabrication and characterisation of hierarchical biomimetic superhydrophobic structures. RSC Adv. 2014;4:22053–93.

    Article  CAS  Google Scholar 

  9. Ellinas K, Tserepi A, Gogolides E. Durable superhydrophobic and superamphiphobic polymeric surfaces and their applications: a review. Adv Colloid Interf Sci. 2017;250:132–57.

    Article  CAS  Google Scholar 

  10. Shirtcliffe NJ, McHale G, Newton MI. The superhydrophobicity of polymer surfaces: recent developments. J Polym Sci Part B Polym Phys. 2011;49:1203–17.

    Article  CAS  Google Scholar 

  11. Das S, Kumar S, Samal SK, Mohanty S, Nayak SK. A review on superhydrophobic polymer nanocoatings: recent development and applications. Ind Eng Chem Res. 2018;57:2727–45.

    Article  CAS  Google Scholar 

  12. Yilgor I, Bilgin S, Isik M, Yilgor E. Facile preparation of superhydrophobic polymer surfaces. Polymer. 2012;53:1180–8.

    Article  CAS  Google Scholar 

  13. Ribeiro T, Baleizão C, Farinha JPS. Functional films from silica/polymer nanoparticles. Materials. 2014;7:3881–900.

    Article  Google Scholar 

  14. Namazi H. Polymers in our daily life. Bioimpacts. 2017;7:73–4.

    Article  CAS  Google Scholar 

  15. Berendsen CWJ, Škereň M, Najdek D, Černý F. Superhydrophobic surface structures in thermoplastic polymers by interference lithography and thermal imprinting. Appl Surf Sci. 2009;255:9305–10.

    Article  CAS  Google Scholar 

  16. Sasaki K, Tenjimbayashi M, Manabe K, Shiratori S. Asymmetric superhydrophobic/superhydrophilic cotton fabrics designed by spraying polymer and nanoparticles. ACS Appl Mater Interfaces. 2016;8:651–9.

    Article  CAS  Google Scholar 

  17. Wang Z, Ma H, Chu B, Hsiao BS. Super-hydrophobic modification of porous natural polymer “luffa sponge” for oil absorption. Polymer. 2017;126:470–6.

    Article  CAS  Google Scholar 

  18. Razavi SMR, Oh J, Sett S, Feng L, Yan X, Hoque MJ, Liu A, Haasch RT, Masoomi M, Bagheri R, Miljkovic N. Superhydrophobic surfaces made from naturally derived hydrophobic materials. ACS Sustain Chem Eng. 2017;5:11362–70.

    Article  CAS  Google Scholar 

  19. Wang X, Pan Y, Liu X, Liu H, Li N, Liu C, Schubert DW, Shen C. Facile fabrication of superhydrophobic and eco-friendly poly(lactic acid) foam for oil-water separation via skin peeling. ACS Appl Mater Interfaces. 2019;11:14362–7.

    Article  CAS  Google Scholar 

  20. Alves NM, Shi J, Oramas E, Santos JL, Tomás H, Mano JF. Bioinspired superhydrophobic poly(L-lactic acid) surfaces control bone marrow derived cells adhesion and proliferation. J Biomed Mater Res Part A. 2009;91:480–8.

    Article  CAS  Google Scholar 

  21. Xie J, Yang Y, Gao B, Wan Y, Li YC, Cheng D, Xiao T, Li K, Fu Y, Xu J, Zhao Q, Zhang Y, Tang Y, Yao Y, Wang Z, Liu L. Magnetic-sensitive nanoparticle self-assembled superhydrophobic biopolymer-coated slow-release fertilizer: fabrication, enhanced performance, and mechanism. ACS Nano. 2019;13:3320–33.

    Article  CAS  Google Scholar 

  22. Wang J, Kaplan JA, Colson YL, Grinstaff MW. Stretch-induced drug delivery from superhydrophobic polymer composites: use of crack propagation failure modes for controlling release rates. Angew Chem Int Ed. 2016;55:2796–800.

    Article  CAS  Google Scholar 

  23. Rial-Hermida MI, Oliveira NM, Concheiro A, Alvarez-Lorenzo C, Mano JF. Bioinspired superamphiphobic surfaces as a tool for polymer- and solvent-independent preparation of drug-loaded spherical particles. Acta Biomater. 2014;10:4314–22.

    Article  CAS  Google Scholar 

  24. Khanjani P, King AWT, Partl GJ, Johansson LS, Kostiainen MA, Ras RHA. Superhydrophobic paper from nanostructured fluorinated cellulose esters. ACS Appl Mater Interfaces. 2018;10:11280–8.

    Article  CAS  Google Scholar 

  25. Lee Y, Ju KY, Lee JK. Stable biomimetic superhydrophobic surfaces fabricated by polymer replication method from hierarchically structured surfaces of al templates. Langmuir. 2010;26:14103–10.

    Article  CAS  Google Scholar 

  26. Xu QF, Mondal B, Lyons AM. Fabricating superhydrophobic polymer surfaces with excellent abrasion resistance by a simple lamination templating method. ACS Appl Mater Interfaces. 2011;3:3508–14.

    Article  CAS  Google Scholar 

  27. Mondal B, Mac Giolla Eain M, Xu QF, Egan VM, Punch J, Lyons AM. Design and fabrication of a hybrid superhydrophobic-hydrophilic surface that exhibits stable dropwise condensation. ACS Appl Mater Interfaces. 2015;7:23575–88.

    Article  CAS  Google Scholar 

  28. Zhang ZX, Zhang T, Zhang X, Xin Z, Deng X, Prakashan K. Mechanically stable superhydrophobic polymer films by a simple hot press lamination and peeling process. RSC Adv. 2016;6:12530–6.

    Article  CAS  Google Scholar 

  29. Huovinen E, Hirvi J, Suvanto M, Pakkanen TA. Micro-micro hierarchy replacing micro-nano hierarchy: a precisely controlled way to produce wear-resistant superhydrophobic polymer surfaces. Langmuir. 2012;28:14747–55.

    Article  CAS  Google Scholar 

  30. Huovinen E, Takkunen L, Korpela T, Suvanto M, Pakkanen TT, Pakkanen TA. Mechanically robust superhydrophobic polymer surfaces based on protective micropillars. Langmuir. 2014;30:1435–43.

    Article  CAS  Google Scholar 

  31. Kim S, Cho H, Hwang W. Simple fabrication method of flexible and translucent high-aspect ratio superhydrophobic polymer tube using a repeatable replication and nondestructive detachment process. Chem Eng J. 2019;361:975–81.

    Article  CAS  Google Scholar 

  32. Gong G, Wu J, Liu J, Sun N, Zhao Y, Jiang L. Bio-inspired adhesive superhydrophobic polyimide mat with high thermal stability. J Mater Chem. 2012;22:8257–62.

    Article  CAS  Google Scholar 

  33. de Leon A, Advincula RC. Conducting polymers with superhydrophobic effects as anticorrosion coating. In: Intelligent coatings for corrosion control, Imprint: Butterworth-Heinemann, Hardcover ISBN: 9780124114678, Waltham, MA, USA; 2015. p. 409–30.

    Google Scholar 

  34. Satoh M, Kaneto K, Yoshino K. Electrochemistry preparation of high quality poly(p-phenylene). J Chem Soc Chem Commun. 1985;22:1629–30.

    Article  Google Scholar 

  35. Bai H, Chun Li GS. Electrochemical fabrication of superhydrophobic surfaces on metal and semiconductor substrates. J Adhes Sci Technol. 2008;22:1819–39.

    Article  CAS  Google Scholar 

  36. Park M-H, Ha J-H, La M, Ko Y-B, Kim D, Park S-H. Conducting super-hydrophobic thin film for electric heating applications. J Nanosci Nanotechnol. 2019;19:1506–10.

    Article  CAS  Google Scholar 

  37. Darmanin T, De Givenchy ET, Amigoni S, Guittard F. Hydrocarbon versus fluorocarbon in the electrodeposition of superhydrophobic polymer films. Langmuir. 2010;26:17596–602.

    Article  CAS  Google Scholar 

  38. Zenerino A, Darmanin T, Taffin De Givenchy E, Amigoni S, Guittard F. Connector ability to design superhydrophobic and oleophobic surfaces from conducting polymers. Langmuir. 2010;26:13545–9.

    Article  CAS  Google Scholar 

  39. Taleb S, Darmanin T, Guittard F. Superhydrophobic conducting polymers with switchable water and oil repellency by voltage and ion exchange. RSC Adv. 2014;4:3550–5.

    Article  CAS  Google Scholar 

  40. Jabarullah NH, Verrelli E, Mauldin C, Navarro LA, Golden JH, Madianos LM, Kemp NT. Superhydrophobic SAM modified electrodes for enhanced current limiting properties in intrinsic conducting polymer surge protection devices. Langmuir. 2015;31:6253–64.

    Article  CAS  Google Scholar 

  41. Ren Y, Lin Z, Mao X, Tian W, Van Voorhis T, Hatton TA. Superhydrophobic, surfactant-doped, conducting polymers for electrochemically reversible adsorption of organic contaminants. Adv Funct Mater. 2018;28:1801466.

    Article  CAS  Google Scholar 

  42. Irzh A, Ghindes L, Gedanken A. Rapid deposition of transparent super-hydrophobic layers on various surfaces using microwave plasma. ACS Appl Mater Interfaces. 2011;3:4566–72.

    Article  CAS  Google Scholar 

  43. Nagappan S, Park JJ, Park SS, Lee W-K, Ha C-S. Bio-inspired, multi-purpose and instant superhydrophobic-superoleophilic lotus leaf powder hybrid micro-nanocomposites for selective oil spill capture. J Mater Chem A. 2013;1:6761–9.

    Article  CAS  Google Scholar 

  44. Nagappan S, Choi M-C, Sung G, Park SS, Moorthy MS, Chu S-W, Lee W-K, Ha C-S. Highly transparent, hydrophobic fluorinated polymethylsiloxane/silica organic-inorganic hybrids for anti-stain coating. Macromol Res. 2013;21:669–80.

    Article  CAS  Google Scholar 

  45. Nagappan S, Park SS, Yu EJ, Cho HJ, Park JJ, Lee W-K, Ha C-S. A highly transparent, amphiphobic, stable and multi-purpose poly(vinyl chloride) metallopolymer for anti-fouling and anti-staining coatings. J Mater Chem A. 2013;1:12144–53.

    Article  CAS  Google Scholar 

  46. Nagappan S, Ha C-S. Superhydrophobic and self-cleaning natural leaf powder/poly(methylhydroxysiloxane) hybrid micro-nanocomposites. Macromol Res. 2014;22:843–52.

    Article  CAS  Google Scholar 

  47. Nagappan S, Park SS, Tapaswi PK, Rao KM, Ha C-S, Hwang T-S. Camellia japonica-polysiloxane based superhydrophobic hybrid powder for the selective adsorption of metal ions from a mixture of metal ions in artificial sea water. J Porous Mater. 2015;22:229–38.

    Article  CAS  Google Scholar 

  48. Nagappan S, Lee DB, Seo DJ, Park SS, Ha C-S. Superhydrophobic mesoporous material as a pH-sensitive organic dye adsorbent. J Ind Eng Chem. 2015;22:288–95.

    Article  CAS  Google Scholar 

  49. Nagappan S, Ha C-S. In-situ addition of graphene oxide for improving the thermal stability of superhydrophobic hybrid materials. Polymer. 2017;116:412–22.

    Article  CAS  Google Scholar 

  50. Li M, Bian C, Yang G, Qiang X. Facile fabrication of water-based and non-fluorinated superhydrophobic sponge for efficient separation of immiscible oil/water mixture and water-in-oil emulsion. Chem Eng J. 2019;368:350–8.

    Article  CAS  Google Scholar 

  51. Nagappan S, Ha C-S. Emerging trends in superhydrophobic surface based magnetic materials: fabrications and their potential applications. J Mater Chem A. 2015;3:3224–51.

    Article  CAS  Google Scholar 

  52. Zheng Z, Wang J, Chen H, Feng L, Jing R, Lu M, Hu B, Ji J. Magnetic superhydrophobic polymer nanosphere cage as a framework for miceller catalysis in biphasic media. Chem Cat Chem. 2014;6:1626–34.

    CAS  Google Scholar 

  53. Li ZT, He FA, Lin B. Preparation of magnetic superhydrophobic melamine sponge for oil-water separation. Powder Technol. 2019;345:571–9.

    Article  CAS  Google Scholar 

  54. Liu P, Zhang Y, Liu S, Zhang Y, Du Z, Qu L. Bio-inspired fabrication of fire-retarding, magnetic-responsive, superhydrophobic sponges for oil and organics collection. Appl Clay Sci. 2019;172:19–27.

    Article  CAS  Google Scholar 

  55. Liu Y, Wang X, Feng S. Nonflammable and magnetic sponge decorated with polydimethylsiloxane brush for multitasking and highly efficient oil–water separation. Adv Funct Mater. 2019;29:1902488.

    Article  CAS  Google Scholar 

  56. Lv X, Tian D, Peng Y, Li J, Jiang G. Superhydrophobic magnetic reduced graphene oxide-decorated foam for efficient and repeatable oil-water separation. Appl Surf Sci. 2019;466:937–45.

    Article  CAS  Google Scholar 

  57. Dutra GVS, Araújo OA, Neto WS, Garg VK, Oliveira AC, Júnior AF. Obtaining superhydrophopic magnetic nanoparticles applicable in the removal of oils on aqueous surface. Mater Chem Phys. 2017;200:204–16.

    Article  CAS  Google Scholar 

  58. Beshkar F, Khojasteh H, Salavati-Niasari M. Recyclable magnetic superhydrophobic straw soot sponge for highly efficient oil/water separation. J Colloid Interface Sci. 2017;497:57–65.

    Article  CAS  Google Scholar 

  59. Su X, Li H, Lai X, Zhang L, Liao X, Wang J, Chen Z, He J, Zeng X. Dual-functional superhydrophobic textiles with asymmetric roll down/pinned states for water droplet transportation and oil−water separation. ACS Appl Mater Interfaces. 2018;10:4213–21.

    Article  CAS  Google Scholar 

  60. Tian L, He X, Lei X, Qiao M, Gu J, Zhang Q. Efficient and green fabrication of porous magnetic chitosan particles based on a high-adhesive superhydrophobic polyimide fiber mat. ACS Sustain Chem Eng. 2018;6:12914–24.

    Article  CAS  Google Scholar 

  61. Chen X, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev. 2007;107:2891–959.

    Article  CAS  Google Scholar 

  62. Zhang X, Jin M, Liu Z, Tryk DA, Nishimoto S, Murakami T, Fujishima A. Superhydrophobic TiO2 surfaces: preparation, photocatalytic wettability conversion, and superhydrophobic-superhydrophilic patterning. J Phys Chem C. 2007;111:14521–9.

    Article  CAS  Google Scholar 

  63. Macias-Montero M, Lopez-Santos C, Filippin AN, Rico VJ, Espinos JP, Fraxedas J, Perez-Dieste V, Escudero C, Gonzalez-Elipe AR, Borras A. In-situ determination of the water condensation mechanisms on superhydrophobic and superhydrophilic titanium dioxide nanotubes. Langmuir. 2017;33:6449–56.

    Article  CAS  Google Scholar 

  64. Wu H, Zhu K, Cao B, Zhang Z, Wu B, Liang L, Chai G, Liu A. Smart design of wettability-patterned gradients on substrate-independent coated surfaces to control unidirectional spreading of droplets. Soft Matter. 2017;13:2995–3002.

    Article  CAS  Google Scholar 

  65. Hu L, Zhang L, Wang D, Lin X, Chen Y. Fabrication of biomimetic superhydrophobic surface based on nanosecond laser-treated titanium alloy surface and organic polysilazane composite coating. Colloids Surf A Physicochem Eng Asp. 2018;555:515–24.

    Article  CAS  Google Scholar 

  66. Zhang X, Guo Y, Zhang Z, Zhang P. Self-cleaning superhydrophobic surface based on titanium dioxide nanowires combined with polydimethylsiloxane. Appl Surf Sci. 2013;284:319–23.

    Article  CAS  Google Scholar 

  67. Fleming RA, Zou M. Silica nanoparticle-based films on titanium substrates with long-term superhydrophilic and superhydrophobic stability. Appl Surf Sci. 2013;280:820–7.

    Article  CAS  Google Scholar 

  68. Liu K, Yao X, Jiang L. Recent developments in bio-inspired special wettability. Chem Soc Rev. 2010;39:3240–55.

    Article  CAS  Google Scholar 

  69. Xin B, Hao J. Reversibly switchable wettability. Chem Soc Rev. 2010;39:769–82.

    Article  CAS  Google Scholar 

  70. Liu K, Cao M, Fujishima A, Jiang L. Bio-inspired titanium dioxide materials with special wettability and their applications. Chem Rev. 2014;114:10044–94.

    Article  CAS  Google Scholar 

  71. Gao L, Lu Y, Zhan X, Li J, Sun Q. A robust, anti-acid, and high-temperature-humidity-resistant superhydrophobic surface of wood based on a modified TiO2 film by fluoroalkyl silane. Surf Coat Technol. 2015;262:33–9.

    Article  CAS  Google Scholar 

  72. Li J, Lu Y, Wu Z, Bao Y, Xiao R, Yu H, Chen Y. Durable, self-cleaning and superhydrophobic bamboo timber surfaces based on TiO2 films combined with fluoroalkylsilane. Ceram Int. 2016;42:9621–9.

    Article  CAS  Google Scholar 

  73. Rezaei S, Seyfi J, Hejazi I, Davachi SM, Khonakdar HA. POSS fernlike structure as a support for TiO2 nanoparticles in fabrication of superhydrophobic polymer-based nanocomposite surfaces. Colloids Surf A Physicochem Eng Asp. 2017;520:514–21.

    Article  CAS  Google Scholar 

  74. Tang Y, Fu T, Liu Q, Luo W. Copper based superhydrophobic microchannels: fabrication and its effect on friction reduction. Mater Sci Technol. 2015;31:730–6.

    Article  CAS  Google Scholar 

  75. Feng L, Yang M, Shi X, Liu Y, Wang Y, Qiang X. Copper-based superhydrophobic materials with long-term durability, stability, regenerability, and self-cleaning property. Colloids Surf A Physicochem Eng Asp. 2016;508:39–47.

    Article  CAS  Google Scholar 

  76. Akbari R, Godeau G, Mohammadizadeh MR, Guittard F, Darmanin T. Fabrication of superhydrophobic hierarchical surfaces by square pulse electrodeposition: copper-based layers on gold/silicon (100) substrates. ChemPlusChem. 2019;84:368–73.

    Article  CAS  Google Scholar 

  77. Crick CR, Gibbins JA, Parkin IP. Superhydrophobic polymer-coated copper-mesh; membranes for highly efficient oil-water separation. J Mater Chem A. 2013;1:5943–8.

    Article  CAS  Google Scholar 

  78. Zhang D, Li L, Wu Y, Sun W, Wang J, Sun H. One-step method for fabrication of superhydrophobic and superoleophilic surface for water-oil separation. Colloids Surf A Physicochem Eng Asp. 2018;552:32–8.

    Article  CAS  Google Scholar 

  79. Qiao X, Yang C, Zhang Q, Yang S, Chen Y, Zhang D, Yuan X, Wang W, Zhao Y. Preparation of parabolic superhydrophobic material for oil-water separation. Materials. 2018;11:1914.

    Article  CAS  Google Scholar 

  80. Su X, Li H, Lai X, Zhang L, Liang T, Feng Y, Zeng X. Polydimethylsiloxane-based superhydrophobic surfaces on steel substrate: fabrication, reversibly extreme wettability and oil-water separation. ACS Appl Mater Interfaces. 2017;9:3131–41.

    Article  CAS  Google Scholar 

  81. Zhu X, Zhang Z, Men X, Yang J, Xu X. Fabrication of an intelligent superhydrophobic surface based on ZnO nanorod arrays with switchable adhesion property. Appl Surf Sci. 2010;256:7619–22.

    Article  CAS  Google Scholar 

  82. Xu L, Liu F, Liu M, Wang Z, Qian Z, Ke W, Han E-H, Jie G, Wang J, Zhu L. Fabrication of repairable superhydrophobic surface and improved anticorrosion performance based on zinc-rich coating. Prog Org Coat. 2019;137:105335.

    Article  CAS  Google Scholar 

  83. Karapanagiotis I, Manoudis PN, Savva A, Panayiotou C. Superhydrophobic polymer-particle composite films produced using various particle sizes. Surf Interface Anal. 2012;44:870–5.

    Article  CAS  Google Scholar 

  84. Xu M, Lu N, Qi D, Xu H, Wang Y, Shi S, Chi L. Fabrication of superhydrophobic polymer films with hierarchical silver microbowl array structures. J Colloid Interface Sci. 2011;360:300–4.

    Article  CAS  Google Scholar 

  85. Liang X, Zhang H, Xu C, Cao D, Gao Q, Cheng S. Condensation effect-induced improved sensitivity for SERS trace detection on a superhydrophobic plasmonic nanofibrous mat. RSC Adv. 2017;7:44492–8.

    Article  CAS  Google Scholar 

  86. Zhao Y, Xie S, Jiang Y. The superhydrophobic properties of ZrO2 induced by laser irradiation. Surf Interface Anal. 2012;44:1360–3.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank our project supporter “National Research Foundation of Korea” (NRF) Grant funded by the Ministry of Science and ICT, Korea (NRF2017R1A2B3012961), and Brain Korea 21 Plus Program (21A2013800002) for writing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Sik Ha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagappan, S., Ha, CS. (2021). Superhydrophobic Polymer/Nanoparticle Hybrids. In: Hosseini, M., Karapanagiotis, I. (eds) Materials with Extreme Wetting Properties. Springer, Cham. https://doi.org/10.1007/978-3-030-59565-4_4

Download citation

Publish with us

Policies and ethics