Skip to main content

Self-Recovery Superhydrophobic Surfaces

  • Chapter
  • First Online:
Materials with Extreme Wetting Properties

Abstract

Superhydrophobic surfaces are already being used in processes such as self-cleaning, water-oil separation, water harvesting, and other fields. Surfaces are defined as superhydrophobic when they consist of densely packed protrusions on the nanoscale and/or microscale, with side walls that have tilt angles exceeding the advancing contact angle of water on the specific materials. This state is achieved by combining hierarchical roughness and low surface energy of the materials forming the surface. High aspect structures made of organic materials are, however, usually mechanically weak. The durability of superhydrophobic surfaces is an essential factor when considering practical applications. During the last decade, researchers invested significant time and effort into developing self-recovery superhydrophobic surfaces in order to broaden the range of further possible applications. An overview of self-recovery superhydrophobic surfaces is provided in this chapter, with a particular focus on the status of current fabrication processes and possible applications. In addition, an outlook on future fabrication techniques for creating robust and durable superhydrophobic surfaces is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cassie ABD, Baxter S. Wettability of porous surfaces. Trans Faraday Soc. 1944;40(0):546–51.

    Article  CAS  Google Scholar 

  2. Blossey R. Self-cleaning surfaces - virtual realities. Nat Mater. 2003;2(5):301–6.

    Article  CAS  Google Scholar 

  3. Guix M, Orozco J, García M, Gao W, Sattayasamitsathit S, Merkoçi A, Escarpa A, Wang J. Superhydrophobic alkanethiol-coated microsubmarines for effective removal of oil. ACS Nano. 2012;6(5):4445–51.

    Article  CAS  Google Scholar 

  4. Feng L, Zhang Z, Mai Z, Ma Y, Liu B, Jiang L, Zhu D. A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angew Chem Int Ed. 2004;43(15):2012–4.

    Article  CAS  Google Scholar 

  5. Genzer J, Efimenko K. Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling. 2006;22(5):339–60.

    Article  CAS  Google Scholar 

  6. Zhang F, Zhao L, Chen H, Xu S, Evans DG, Duan X. Corrosion resistance of superhydrophobic layered double hydroxide films on aluminum. Angew Chem Int Ed. 2008;47(13):2466–9.

    Article  CAS  Google Scholar 

  7. Guo Z, Zhou F, Hao J, Liu W. Stable biomimetic super-hydrophobic engineering materials. J Am Chem Soc. 2005;127(45):15670–1.

    Article  CAS  Google Scholar 

  8. Koch K, Bhushan B, Jung YC, Barthlott W. Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion. Soft Matter. 2009;5(7):1386–93.

    Article  CAS  Google Scholar 

  9. Xue C-H, Ma J-Z. Long-lived superhydrophobic surfaces. J Mater Chem A. 2013;1(13):4146–61.

    Article  CAS  Google Scholar 

  10. Cottin-Bizonne C, Barrat J-L, Bocquet L, Charlaix E. Low-friction flows of liquid at nanopatterned interfaces. Nat Mater. 2003;2(4):237–40.

    Article  CAS  Google Scholar 

  11. Gao X, Yan X, Yao X, Xu L, Zhang K, Zhang J, Yang B, Jiang L. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Adv Mater. 2007;19(17):2213–7.

    Article  CAS  Google Scholar 

  12. Ferrari M, Benedetti A. Superhydrophobic surfaces for applications in seawater. Adv Colloid Interf Sci. 2015;222:291–304.

    Article  CAS  Google Scholar 

  13. Ma M, Hill RM. Superhydrophobic surfaces. Curr Opin Colloid Interface Sci. 2006;11(4):193–202.

    Article  CAS  Google Scholar 

  14. Zhang X, Shi F, Niu J, Jiang Y, Wang Z. Superhydrophobic surfaces: from structural control to functional application. J Mater Chem. 2008;18(6):621–33.

    Article  CAS  Google Scholar 

  15. Wen G, Guo Z, Liu W. Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications. Nanoscale. 2017;9(10):3338–66.

    Article  CAS  Google Scholar 

  16. Ellinas K, Tserepi A, Gogolides E. Durable superhydrophobic and superamphiphobic polymeric surfaces and their applications: a review. Adv Colloid Interf Sci. 2017;250:132–57.

    Article  CAS  Google Scholar 

  17. Chen K, Wu Y, Zhou S, Wu L. Recent development of durable and self-healing surfaces with special wettability. Macromol Rapid Commun. 2016;37(6):463–85.

    Article  CAS  Google Scholar 

  18. Verho T, Bower C, Andrew P, Franssila S, Ikkala O, Ras RHA. Mechanically durable superhydrophobic surfaces. Adv Mater. 2011;23(5):673–8.

    Article  CAS  Google Scholar 

  19. Gao S, Dong X, Huang J, Dong J, Cheng Y, Chen Z, Lai Y. Co-solvent induced self-roughness superhydrophobic coatings with self-healing property for versatile oil-water separation. Appl Surf Sci. 2018;459:512–9.

    Article  CAS  Google Scholar 

  20. Ionov L, Synytska A. Self-healing superhydrophobic materials. PCCP. 2012;14(30):10497–502.

    Article  CAS  Google Scholar 

  21. Zhou H, Wang H, Niu H, Gestos A, Lin T. Robust, self-healing superamphiphobic fabrics prepared by two-step coating of fluoro-containing polymer, fluoroalkyl silane, and modified silica nanoparticles. Adv Funct Mater. 2013;23(13):1664–70.

    Article  CAS  Google Scholar 

  22. Li Y, Chen S, Wu M, Sun J. All spraying processes for the fabrication of robust, self-healing, superhydrophobic coatings. Adv Mater. 2014;26(20):3344–8.

    Article  CAS  Google Scholar 

  23. Chen S, Li X, Li Y, Sun J. Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric. ACS Nano. 2015;9(4):4070–6.

    Article  CAS  Google Scholar 

  24. Rao Q, Chen K, Wang C. Facile preparation of self-healing waterborne superhydrophobic coatings based on fluoroalkyl silane-loaded microcapsules. RSC Adv. 2016;6(59):53949–54.

    Article  CAS  Google Scholar 

  25. Li Y, Li L, Sun J. Bioinspired self-healing superhydrophobic coatings. Angew Chem Int Ed. 2010;49(35):6129–33.

    Article  CAS  Google Scholar 

  26. Nakayama K, Koyama A, Zhu C, Aoki Y, Habazaki H. Rapid and repeatable self-healing superoleophobic porous aluminum surface using infiltrated liquid healing agent. Adv Mater Interfaces. 2018;5(19):1800566.

    Article  CAS  Google Scholar 

  27. Lee Y, You E-A, Ha Y-G. Facile one-step construction of covalently networked, self-healable, and transparent superhydrophobic composite films. Appl Surf Sci. 2018;445:368–75.

    Article  CAS  Google Scholar 

  28. Zhou H, Wang H, Niu H, Zhao Y, Xu Z, Lin T. A waterborne coating system for preparing robust, self-healing, superamphiphobic surfaces. Adv Funct Mater. 2017;27(14):1604261.

    Article  CAS  Google Scholar 

  29. Wang X, Liu X, Zhou F, Liu W. Self-healing superamphiphobicity. Chem Commun. 2011;47(8):2324–6.

    Article  CAS  Google Scholar 

  30. Chen K, Zhou S, Yang S, Wu L. Fabrication of all-water-based self-repairing superhydrophobic coatings based on UV-responsive microcapsules. Adv Funct Mater. 2015;25(7):1035–41.

    Article  CAS  Google Scholar 

  31. Li B, Zhang J. Polysiloxane/multiwalled carbon nanotubes nanocomposites and their applications as ultrastable, healable and superhydrophobic coatings. Carbon. 2015;93:648–58.

    Article  CAS  Google Scholar 

  32. Long M, Peng S, Deng W, Yang X, Miao K, Wen N, Miao X, Deng W. Robust and thermal-healing superhydrophobic surfaces by spin-coating of polydimethylsiloxane. J Colloid Interface Sci. 2017;508:18–27.

    Article  CAS  Google Scholar 

  33. Wu G, An J, Tang X-Z, Xiang Y, Yang J. A versatile approach towards multifunctional robust microcapsules with tunable, restorable, and solvent-proof superhydrophobicity for self-healing and self-cleaning coatings. Adv Funct Mater. 2014;24(43):6751–61.

    Article  CAS  Google Scholar 

  34. Liu Y, Liu Z, Liu Y, Hu H, Li Y, Yan P, Yu B, Zhou F. One-step modification of fabrics with bioinspired polydopamine@octadecylamine nanocapsules for robust and healable self-cleaning performance. Small. 2015;11(4):426–31.

    Article  CAS  Google Scholar 

  35. Xue C-H, Zhang Z-D, Zhang J, Jia S-T. Lasting and self-healing superhydrophobic surfaces by coating of polystyrene/SiO2 nanoparticles and polydimethylsiloxane. J Mater Chem A. 2014;2(36):15001–7.

    Article  CAS  Google Scholar 

  36. Liu M, Hou Y, Li J, Tie L, Peng Y, Guo Z. Inorganic adhesives for robust, self-healing, superhydrophobic surfaces. J Mater Chem A. 2017;5(36):19297–305.

    Article  CAS  Google Scholar 

  37. Zeng M, Wang P, Luo J, Peng B, Ding B, Zhang L, Wang L, Huang D, Echols I, Abo Deeb E, Bordovsky E, Choi C-H, Ybanez C, Meras P, Situ E, Mannan MS, Cheng Z. Hierarchical, self-healing and superhydrophobic zirconium phosphate hybrid membrane based on the interfacial crystal growth of lyotropic two-dimensional nanoplatelets. ACS Appl Mater Interfaces. 2018;10(26):22793–800.

    Article  CAS  Google Scholar 

  38. Zulfiqar U, Awais M, Hussain SZ, Hussain I, Husain SW, Subhani T. Durable and self-healing superhydrophobic surfaces for building materials. Mater Lett. 2017;192:56–9.

    Article  CAS  Google Scholar 

  39. Xi G, Wang J, Luo G, Zhu Y, Fan W, Huang M, Wang H, Liu X. Healable superhydrophobicity of novel cotton fabrics modified via one-pot mist copolymerization. Cellulose. 2016;23(1):915–27.

    Article  CAS  Google Scholar 

  40. Wei Q, Schlaich C, Prévost S, Schulz A, Böttcher C, Gradzielski M, Qi Z, Haag R, Schalley CA. Supramolecular polymers as surface coatings: rapid fabrication of healable superhydrophobic and slippery surfaces. Adv Mater. 2014;26(43):7358–64.

    Article  CAS  Google Scholar 

  41. Manna U, Lynn DM. Restoration of superhydrophobicity in crushed polymer films by treatment with water: self-healing and recovery of damaged topographic features aided by an unlikely source. Adv Mater. 2013;25(36):5104–8.

    Article  CAS  Google Scholar 

  42. Li B, Kan L, Zhang S, Liu Z, Li C, Li W, Zhang X, Wei H, Ma N. Planting carbon nanotubes onto supramolecular polymer matrices for waterproof non-contact self-healing. Nanoscale. 2019;11(2):467–73.

    Article  CAS  Google Scholar 

  43. Puretskiy N, Stoychev G, Synytska A, Ionov L. Surfaces with self-repairable ultrahydrophobicity based on self-organizing freely floating colloidal particles. Langmuir. 2012;28(8):3679–82.

    Article  CAS  Google Scholar 

  44. Bai N, Li Q, Dong H, Tan C, Cai P, Xu L. A versatile approach for preparing self-recovering superhydrophobic coatings. Chem Eng J. 2016;293:75–81.

    Article  CAS  Google Scholar 

  45. Tanaka K, Fujii Y, Atarashi H, Akabori K-I, Hino M, Nagamura T. Nonsolvents cause swelling at the interface with poly(methyl methacrylate) films. Langmuir. 2008;24(1):296–301.

    Article  CAS  Google Scholar 

  46. Jing B, Zhao J, Wang Y, Yi X, Duan H. Water-swelling-induced morphological instability of a supported polymethyl methacrylate thin film. Langmuir. 2010;26(11):7651–5.

    Article  CAS  Google Scholar 

  47. N’Diaye M, Pascaretti-Grizon F, Massin P, Baslé MF, Chappard D. Water absorption of poly(methyl methacrylate) measured by vertical interference microscopy. Langmuir. 2012;28(31):11609–14.

    Article  CAS  Google Scholar 

  48. Liu Y, Gu H, Jia Y, Liu J, Zhang H, Wang R, Zhang B, Zhang H, Zhang Q. Design and preparation of biomimetic polydimethylsiloxane (PDMS) films with superhydrophobic, self-healing and drag reduction properties via replication of shark skin and SI-ATRP. Chem Eng J. 2019;356:318–28.

    Article  CAS  Google Scholar 

  49. Wu M, Li Y, An N, Sun J. Applied voltage and near-infrared light enable healing of superhydrophobicity loss caused by severe scratches in conductive superhydrophobic films. Adv Funct Mater. 2016;26(37):6777–84.

    Article  CAS  Google Scholar 

  50. Li W, Wu G, Tan J, Zhu Y, Yu X, Lei Y, Sun G, You B. Facile fabrication of self-healing superhydrophobic nanocomposite films enabled by near-infrared light. J Mater Sci. 2019;54(10):7702–18.

    Article  CAS  Google Scholar 

  51. Zhang D, Cheng Z, Liu Y. Smart wetting control on shape memory polymer surfaces. Chem Eur J. 2019;25(16):3979–92.

    Article  CAS  Google Scholar 

  52. Cheng Z, Zhang D, Lv T, Lai H, Zhang E, Kang H, Wang Y, Liu P, Liu Y, Du Y, Dou S, Jiang L. Superhydrophobic shape memory polymer arrays with switchable isotropic/anisotropic wetting. Adv Funct Mater. 2018;28(7):1705002.

    Article  CAS  Google Scholar 

  53. Qian H, Xu D, Du C, Zhang D, Li X, Huang L, Deng L, Tu Y, Mol JMC, Terryn HA. Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties. J Mater Chem A. 2017;5(5):2355–64.

    Article  CAS  Google Scholar 

  54. Chen C-M, Yang S. Directed water shedding on high-aspect-ratio shape memory polymer micropillar arrays. Adv Mater. 2014;26(8):1283–8.

    Article  CAS  Google Scholar 

  55. Lv T, Cheng Z, Zhang D, Zhang E, Zhao Q, Liu Y, Jiang L. Superhydrophobic surface with shape memory micro/nanostructure and its application in rewritable chip for droplet storage. ACS Nano. 2016;10(10):9379–86.

    Article  CAS  Google Scholar 

  56. Wang W, Salazar J, Vahabi H, Joshi-Imre A, Voit WE, Kota AK. Metamorphic superomniphobic surfaces. Adv Mater. 2017;29(27):1700295.

    Article  CAS  Google Scholar 

  57. Das A, Deka J, Raidongia K, Manna U. Robust and self-healable bulk-superhydrophobic polymeric coating. Chem Mater. 2017;29(20):8720–8.

    Article  CAS  Google Scholar 

  58. Qin L, Chen N, Zhou X, Pan Q. A superhydrophobic aerogel with robust self-healability. J Mater Chem A. 2018;6(10):4424–31.

    Article  CAS  Google Scholar 

  59. Chen K, Zhou S, Wu L. Facile fabrication of self-repairing superhydrophobic coatings. Chem Commun. 2014;50(80):11891–4.

    Article  CAS  Google Scholar 

  60. Jia S, Lu Y, Luo S, Qing Y, Wu Y, Parkin IP. Thermally-induced all-damage-healable superhydrophobic surface with photocatalytic performance from hierarchical BiOCl. Chem Eng J. 2019;366:439–48.

    Article  CAS  Google Scholar 

  61. Lee Y, You E-A, Ha Y-G. Rationally designed, multifunctional self-assembled nanoparticles for covalently networked, flexible and self-healable superhydrophobic composite films. ACS Appl Mater Interfaces. 2018;10(11):9823–31.

    Article  CAS  Google Scholar 

  62. Wang H, Zhou H, Gestos A, Fang J, Lin T. Robust, superamphiphobic fabric with multiple self-healing ability against both physical and chemical damages. ACS Appl Mater Interfaces. 2013;5(20):10221–6.

    Article  CAS  Google Scholar 

  63. Qin L, Chu Y, Zhou X, Pan Q. Fast healable superhydrophobic material. ACS Appl Mater Interfaces. 2019;11(32):29388–95.

    Article  CAS  Google Scholar 

  64. Lv T, Cheng Z, Zhang E, Kang H, Liu Y, Jiang L. Self-restoration of superhydrophobicity on shape memory polymer arrays with both crushed microstructure and damaged surface chemistry. Small. 2017;13(4):1503402.

    Article  CAS  Google Scholar 

  65. Ezazi M, Shrestha B, Klein N, Lee DH, Seo S, Kwon G. Self-healable superomniphobic surfaces for corrosion protection. ACS Appl Mater Interfaces. 2019;11(33):30240–6.

    Article  CAS  Google Scholar 

  66. Ding C, Liu Y, Wang M, Wang T, Fu J. Self-healing, superhydrophobic coating based on mechanized silica nanoparticles for reliable protection of magnesium alloys. J Mater Chem A. 2016;4(21):8041–52.

    Article  CAS  Google Scholar 

  67. Li D, Guo Z. Stable and self-healing superhydrophobic MnO2@fabrics: applications in self-cleaning, oil/water separation and wear resistance. J Colloid Interface Sci. 2017;503:124–30.

    Article  CAS  Google Scholar 

  68. Liu G, Wang W, Yu D. Robust and self-healing superhydrophobic cotton fabric via UV induced click chemistry for oil/water separation. Cellulose. 2019;26(5):3529–41.

    Article  CAS  Google Scholar 

  69. Fang W, Liu L, Li T, Dang Z, Qiao C, Xu J, Wang Y. Electrospun N-substituted polyurethane membranes with self-healing ability for self-cleaning and oil/water separation. Chem Eur J. 2016;22(3):878–83.

    Article  CAS  Google Scholar 

  70. Lee T, Charrault E, Neto C. Interfacial slip on rough, patterned and soft surfaces: a review of experiments and simulations. Adv Colloid Interf Sci. 2014;210:21–38.

    Article  CAS  Google Scholar 

  71. Lauga E, Stone HA. Effective slip in pressure-driven Stokes flow. J Fluid Mech. 2003;489:55–77.

    Article  Google Scholar 

  72. Davis AMJ, Lauga E. Hydrodynamic friction of fakir-like superhydrophobic surfaces. J Fluid Mech. 2010;661:402–11.

    Article  CAS  Google Scholar 

  73. Asmolov ES, Schmieschek S, Harting J, Vinogradova OI. Flow past superhydrophobic surfaces with cosine variation in local slip length. Phys Rev E. 2013;87(2):023005.

    Article  CAS  Google Scholar 

  74. Rothstein JP. Slip on superhydrophobic surfaces. Annu Rev Fluid Mech. 2009;42(1):89–109.

    Article  Google Scholar 

  75. Schäffel D, Koynov K, Vollmer D, Butt H-J, Schönecker C. Local flow field and slip length of superhydrophobic surfaces. Phys Rev Lett. 2016;116(13):134501.

    Article  CAS  Google Scholar 

  76. Liu Y, Liu J, Tian Y, Zhang H, Wang R, Zhang B, Zhang H, Zhang Q. Robust organic–inorganic composite films with multifunctional properties of superhydrophobicity, self-healing, and drag reduction. Ind Eng Chem Res. 2019;58(11):4468–78.

    Article  CAS  Google Scholar 

  77. Li Y, Li B, Zhao X, Tian N, Zhang J. Totally waterborne, nonfluorinated, mechanically robust, and self-healing superhydrophobic coatings for actual anti-icing. ACS Appl Mater Interfaces. 2018;10(45):39391–9.

    Article  CAS  Google Scholar 

  78. Chen K, Gu K, Qiang S, Wang C. Environmental stimuli-responsive self-repairing waterbased superhydrophobic coatings. RSC Adv. 2017;7(1):543–50.

    Article  CAS  Google Scholar 

  79. Wang Y, Xue J, Wang Q, Chen Q, Ding J. Verification of icephobic/anti-icing properties of a superhydrophobic surface. ACS Appl Mater Interfaces. 2013;5(8):3370–81.

    Article  CAS  Google Scholar 

  80. Weng D, Xu F, Li X, Li Y, Sun J. Bioinspired photothermal conversion coatings with self-healing superhydrophobicity for efficient solar steam generation. J Mater Chem A. 2018;6(47):24441–51.

    Article  CAS  Google Scholar 

  81. Liu Y, Zheng Y, Li T, Wang D, Zhou F. Water-solid triboelectrification with self-repairable surfaces for water-flow energy harvesting. Nano Energy. 2019;61:454–61.

    Article  CAS  Google Scholar 

  82. Li Y, Zhao Y, Lu X, Zhu Y, Jiang L. Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole fiber with core–sheath structures for superior microwave absorption. Nano Res. 2016;9(7):2034–45.

    Article  CAS  Google Scholar 

  83. Yin X, Yu S, Zhao Y, Liu E, Wang K. A self-healing Ni3S2 superhydrophobic coating with anti-condensation property. J Taiwan Inst Chem E. 2019;99:268–75.

    Article  CAS  Google Scholar 

  84. Yan X, Huang Z, Sett S, Oh J, Cha H, Li L, Feng L, Wu Y, Zhao C, Orejon D, Chen F, Miljkovic N. Atmosphere-mediated superhydrophobicity of rationally designed micro/nanostructured surfaces. ACS Nano. 2019;13(4):4160–73.

    Article  CAS  Google Scholar 

  85. Tu K, Wang X, Kong L, Guan H. Facile preparation of mechanically durable, self-healing and multifunctional superhydrophobic surfaces on solid wood. Mater Des. 2018;140:30–6.

    Article  CAS  Google Scholar 

  86. Shen Y, Wu Y, Shen Z, Chen H. Fabrication of self-healing superhydrophobic surfaces from water-soluble polymer suspensions free of inorganic particles through polymer thermal reconstruction. Coatings. 2018;8(4):144.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendong Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, W., Kappl, M., Butt, HJ. (2021). Self-Recovery Superhydrophobic Surfaces. In: Hosseini, M., Karapanagiotis, I. (eds) Materials with Extreme Wetting Properties. Springer, Cham. https://doi.org/10.1007/978-3-030-59565-4_2

Download citation

Publish with us

Policies and ethics