Skip to main content

Mineral nutrition

  • Chapter
  • First Online:

Abstract

Statements that plant growth or the biomass production of a terrestrial ecosystem is nutrient limited are always true, and hence, reflect a truism that is of limited ecological value. Exceptions may be sites under bird cliffs or on guano benches on oceanic islands, eutrophic estuaries, or plants growing in very deep shade where C limitation rules out anything else, and of course, hydroponic and agronomic plants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arnone JA III (1997) Indices of plant N availability in an alpine grassland under elevated atmospheric CO2. Plant Soil 190:61–66

    Article  CAS  Google Scholar 

  • Atkin OK (1996) Reassessing the nitrogen relations of arctic plants: a mini review. Plant Cell Environ 19:695–704

    Article  Google Scholar 

  • Atkin OK, Collier DE (1992) Relationship between soil nitrogen and floristic variation in late snow areas of the Kosciusko alpine region. Aust J Bot 40:139–149

    Article  CAS  Google Scholar 

  • Atkin OK, Cummins WR (1994) The effect of nitrogen source on growth, nitrogen economy and respiration of two high arctic plant species differing in relative growth rate. Funct Ecol 8:389–399

    Article  Google Scholar 

  • Barnola LG, Montilla MG (1997) Vertical distribution of mycorrhizal colonization, root hairs and below-ground biomass in three contrasting sites from the tropical high mountains, Merida, Venezuela. Arct Alp Res 29:206–212

    Article  Google Scholar 

  • Beck E (1994) Turnover and conservation of nutrients in the pachycaul Senecio keniodendron. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Cambridge University Press, Cambridge, pp 215–221

    Chapter  Google Scholar 

  • Belnap J, Lange O (2003) Biological soil crusts: structure, function, and management. Springer, Berlin

    Book  Google Scholar 

  • Billings WD (1974) Adaptations and origins of alpine plants. Arctic Alp Res 6:129–142

    Article  Google Scholar 

  • Bliss LC (1971) Arctic and alpine plant life cycles. Ann Rev Ecol Syst 2:405–438

    Article  Google Scholar 

  • Blumer P, Diemer M (1996) The occurrence and consequences of grasshopper herbivory in an alpine grassland, Swiss Central Alps. Arct Alp Res 28:435–440

    Article  Google Scholar 

  • Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59

    Article  CAS  PubMed  Google Scholar 

  • Bowman WD (1992) Inputs and storage of nitrogen in winter snowpack in an alpine ecosystem. Arct Alp Res 24:211–215

    Article  Google Scholar 

  • Bowman WD (1994) Accumulation and use of nitrogen and phosphorus following fertilization in two alpine tundra communities. Oikos 70:261–270

    Article  Google Scholar 

  • Bowman WD, Conant RT (1994) Shoot growth dynamics and photosynthetic response to increased nitrogen availability in the alpine willow Salix glauca. Oecologia 97:93–99

    Article  CAS  PubMed  Google Scholar 

  • Bowman WD, Seastedt TR (2001) Structure and function of an alpine ecosystem—Niwot Ridge. Oxford University Press, Oxford, Colorado

    Book  Google Scholar 

  • Bowman WD, Theodose TA, Schardt JC, Conant RT (1993) Constraints of nutrient availability on primary production in two alpine tundra communities. Ecology 74:2085–2097

    Article  Google Scholar 

  • Bowman WD, Theodose TA, Fisk MC (1995) Physiological and production responses of plant growth forms to increases in limiting resources in alpine tundra: implications for differential community response to environmental change. Oecologia

    Google Scholar 

  • Bowman WD, Schardt JC, Schmidt SK (1996) Symbiotic N2-fixation in alpine tundra: ecosytem input and variation in fixation rates among communities. Oecologia 108:345–350

    Article  PubMed  Google Scholar 

  • Brooks PD, Williams MW, Schmidt SK (1996) Microbial activity under alpine snowpacks, Niwot Ridge, Colorado. Biogeochemistry 32:93–113

    Article  Google Scholar 

  • Büdel B, Bendix J, Bicker FR, Green TGA (2008) Dewfall as a water source frequently activates the endolithic cyanobacterial communities in the granites of Taylor valley, Antarctica. J Phycol 44:1415–1424

    Article  PubMed  Google Scholar 

  • Castle SC, Neff JC (2013) What controls plant nutrient use in high elevation ecosystems? Oecologia 173:1551–1561

    Article  CAS  PubMed  Google Scholar 

  • Chambers JC, McMahon JA, Brown RW (1987) Response of an early seral dominant alpine grass and a late seral dominant alpine forb to N and P availability. Reclam Reveg Res 6:219–234

    Google Scholar 

  • Chapin SF III (1978) Phosphate uptake and nutrient utilization by Barrow tundra vegetation. In: Tieszen LL (ed) Vegetation and production ecology of an Alaskan arctic tundra. Ecological studies, vol 29. Springer, Berlin, Heidelberg, New York, pp 483–507

    Google Scholar 

  • Chapin FS III (1987) Environmental controls over growth of tundra plants. Ecol Bull 38:69–76

    Google Scholar 

  • Chapin FS III, Oechel WC (1983) Photosynthesis, respiration, and phosphate absorption by Carexaquatilis ecotypes along latitudinal and local environmental gradients. Ecology 64:743–751

    Article  CAS  Google Scholar 

  • Chapin FS III, Vitousek PM, Van Cleve K (1986) The nature of nutrient limitation in plant communities. Am Nat 127:48–58

    Article  Google Scholar 

  • Chapin DM, Bliss LC, Bledsoe LJ (1991) Environmental regulation of nitrogen fixation in a high arctic lowland ecosystem. Can J Bot 69:2744–2755

    Article  Google Scholar 

  • Chapin FS III, Moilanen L, Kielland K (1993) Preferential use of organic nitrogen for growth by a non-mycorrizal arctic sedge. Nature 361:150–153

    Article  CAS  Google Scholar 

  • Dai L et al (2019) Responses of biomass allocation across two vegetation types to climate fluctuations in the northern Qinghai-Tibet Plateau. Ecol Evol 9(10):6105–6115

    Article  PubMed  PubMed Central  Google Scholar 

  • Danneberg OH, Jenisch HS, Richter E (1980) Der Humushaushalt eines alpinen Pseudogleys unter Curvuletum. In: Franz H (ed) Untersuchungen an alpinen Böden in den Hohen Tauern 1974–1978, Stoffdynamik und Wasserhaushalt. Veröffentlichungen Österr MaB-Hochgebirgsprogramms Hohe Tauern, vol 3. Wagner, Innsbruck, pp 109–129

    Google Scholar 

  • Dearing D (2001) Plant–herbivore interactions. In: Bowman WD, Seastedt WD (eds) (2001) Structure and function of an alpine ecosystem—Niwot Ridge, Colorado. Oxford University Press, Oxford, pp 266–281

    Google Scholar 

  • Diemer M (1992) Population dynamics and spatial arrangement of Ranunculus glacialis L., an alpine perennial herb, in permanent plots. Vegetatio 103:159–166

    Article  Google Scholar 

  • Dornhauser J, Frey B (2018) Alpine soil microbial ecology in a changing world. FEMS Microbiol Ecol 94:fiy099

    Google Scholar 

  • Erschbamer B (1990) Substratabhängigkeit alpiner Rasengesellschaften. Flora 184:389–403

    Article  Google Scholar 

  • Erschbamer B (1996) Wachstumsdynamik und Nährstoffgehalt der alpinen Segge, Carex curvula subsp. rosae, auf unterschiedlichen Substraten. Flora 191:121–129

    Article  Google Scholar 

  • Evans GR (1980) Phytomass, litter, and nutrients in montane and alpine grasslands, Craigieburn Range, New Zealand. In: Benecke U, Davis MR (eds) Mountain environment and subalpine tree growth. New Zealand Forest Service, Wellington, pp 95–110

    Google Scholar 

  • Eviner VT, Chapin FS III (1997) Nitrogen cycle—plant-microbial interactions. Nature 385:26–27

    Article  CAS  Google Scholar 

  • Fisk MC, Schmidt SK (1995) Nitrogen mineralization and microbial biomass nitrogen dynamics in three alpine tundra communities. Soil Sci Soc Am J 59:1036–1043

    Article  CAS  Google Scholar 

  • Fuchs B, Haselwandter K (2008) Arbuscular mycorrhiza of endangered plant species: potential impacts on restoration strategies. In: Varma (ed) Mycorrhiza. Springer, Berlin, Heidelber, pp 565–579

    Google Scholar 

  • Galland P (1982) Recherches sur les sols des pelouses alpines au parc national suisse. Bull Bodenkundl Ges Schweiz 6:137–144

    Google Scholar 

  • Gardes M, Dahlberg A (1996) Mycorrhizal diversity in arctic and alpine tundra: an open question. New Phytol 133:147–157

    Article  Google Scholar 

  • Gerzabek MH, Haberhauer G, Stemmer M, Klepsch S, Haunold E (2004) Long-term behaviour of N-15 in an alpine grassland ecosystem. Biogeochemistry 70:59–69

    Article  CAS  Google Scholar 

  • Graber WK, Siegwolf RTW, Nater W, Leonardi S (1996) Mapping the impact of anthropogenic depositions on high elevated alpine forests. Environ Softw 11:29–64

    Article  Google Scholar 

  • Gütlein A, Zistl-Schlingmann M, Becker JN, Cornejo NS, Detsch F, Dannenmann M, Appelhans T, Hertel D, Kuzyakov KR (2017) Nitrogen turnover and greenhouse gas emissions in a tropical alpine ecosystem, Mt Kilimanjaro, Tanzania. Plant Soil 411:243–259

    Article  CAS  Google Scholar 

  • Halloy S (1991) Islands of life at 6000 m altitude: the environment of the highest autotrophic communities on earth (Socompa Volcano, Andes). Arctic Alp Res 23:247–262

    Article  Google Scholar 

  • Haselwandter K (1979) Mycorrhizal status of ericaceous plants in alpine and subalpine areas. New Phytol 83:427–431

    Article  Google Scholar 

  • Haselwandter K (1987) Mycorrhizal infection and its possible ecological significance in climatically and nutritionally stressed alpine plant communities. Angew Bot 61:107–114

    Google Scholar 

  • Haselwandter K, Read DJ (1982) The significance of a root-fungus association in two Carex species of high-alpine plant communities. Oecologia 53:352–354

    Article  CAS  PubMed  Google Scholar 

  • Haselwandter K, Hofmann A, Holzmann HP, Read DJ (1983) Availability of nitrogen and phosphorus in the nival zone of the alps. Oecologia 57:266–269

    Article  CAS  PubMed  Google Scholar 

  • Haunold E, Gludovatz A, Richter E (1980) Stickstoffdynamik in einem alpinen Pseudogley unter Curvuletum. In: Franz H (ed) Untersuchungen an alpinen Böden in den Hohen Tauern 1974–1978, Stoffdynamik und Wasserhaushalt. Veröffentlichungen Österr MaB-Hochgebirgsprogramms Hohe Tauern, vol 3. Wagner, Innsbruck, pp 131–153

    Google Scholar 

  • Heer C, Körner C (2002) High elevation pioneer plants are sensitive to mineral nutrient addition. Basic Appl Ecol 3:39–47

    Article  Google Scholar 

  • Hegg O (2005) Das Langzeitgedächtnis der Vegetation. Neue Resultate aus der Versuchsweide von 1930 bis 2004 auf der Schynigen Platte (2000 m üM). Ber. D. Reinh.-Tüxen-Ges. 17:41–54

    Google Scholar 

  • Hegg O, Feller U, Dahler W, Scherrer C (1992) Long term influence of fertilization in a Nardetum. Vegetatio 103:151–158

    Article  Google Scholar 

  • Hiltbrunner E, Schwikowski M, Körner C (2005) Inorganic nitrogen storage in alpine snow pack in the Central Alps (Switzerland). Atmos Environ 39:2249–2259

    Article  CAS  Google Scholar 

  • Hitz C, Egli M, Fitze P (2001) Below-ground and above-ground production of vegetational organic matter along a climosequence in alpine grasslands. J Plant Nutr Soil Sci 164:389–397

    Article  CAS  Google Scholar 

  • Hoch G (2013) Reciprocal root-shoot cooling and soil fertilization effects on the seasonal growth of two treeline conifer species. Plant Ecol Diversity 6:21–30

    Google Scholar 

  • Holzmann HP, Haselwandter K (1988) Contribution of nitrogen fixation to nitrogen nutrition in an alpine sedge community (Caricetum curvulae). Oecologia 76:298–302

    Article  Google Scholar 

  • Hope GS, Peterson JA, Radok U, Allison I (1976) The equatorial glaciers of New Guinea. Results of the 1971–73 Australian University expeditions to Irian Jaya: survey, glaciology, meteorology, biology and palaeoenvironments. Balkema, Rotterdam, pp 113–172

    Google Scholar 

  • Huber E, Wanek W, Gottfried M, Pauli H, Schweiger P, Arndt SK, Reiter K, Richter A (2007) Shift in soil-plant nitrogen dynamics of an alpine-nival ecotone. Plant Soil 301:65–76

    Article  CAS  Google Scholar 

  • Inauen N, Körner C, Hiltbrunner E (2012) No growth stimulation by CO2 enrichment in alpine glacier forefield plants. Glob Change Biol 18:985–999

    Article  Google Scholar 

  • Ingestad T (1981) Nutrition and growth of birch and grey alder seedlings in low conductivity solutions and at varied relative rates of nutrient addition. Physiol Plant 52:454–466

    Article  CAS  Google Scholar 

  • Jacot KA, Lüscher A, Nösberger J, Hartwig UA (2000a) Symbiotic N2 fixation of various legume species along an altitudinal gradient in the Swiss Alps. Soil Biol Biochem 32:1043–1052

    Article  CAS  Google Scholar 

  • Jacot KA, Lüscher A, Nösberger J, Hartwig UA (2000b) The relative contribution of symbiotic N2 fixation and other nitrogen sources to grassland ecosystems along an altitudinal gradient in the Alps. Plant Soil 225:201–211

    Article  CAS  Google Scholar 

  • Jaeger CH, Monson RK (1992) Adaptive significance of nitrogen storage in Bistorta bistortoides, an alpine herb. Oecologia 92:578–585

    Article  PubMed  Google Scholar 

  • Jaeger CH III, Monson RK, Fisk MC, Schmidt SK (1999) Seasonal partitioning of nitrogen by plants and soil microorganisms in an alpine ecosystem. Ecology 80:1883–1891

    Article  Google Scholar 

  • Johnson DA, Rumbaugh MD (1986) Field nodulation and acetylene reduction activity of high-altitude legumes in the western United States. Arctic Alp Res 18:171–179

    Article  Google Scholar 

  • Jonasson S (1989) Implications of leaf longevity, leaf nutrient re-absorption and translocation for the resource economy of five evergreen plant species. Oikos 56:121–131

    Article  Google Scholar 

  • Jonasson S, Havstrom M, Jensen M, Callaghan TV (1993) In situ mineralisation of nitrogen and phosphorus of arctic soils after perturbations simulating climate change. Oecologia 95:179–186

    Article  PubMed  Google Scholar 

  • Jonasson S, Michelsen A, Schmidt IK, Nielsen EV, Callaghan TV (1995) Microbial biomass C, N and P in two arctic soils and responses to addition of NPK fertilizer and sugar: implications for plant nutrient uptake. Oecologia 106:507–515

    Article  Google Scholar 

  • Karlsson PS (1994) Photosynthetic capacity and photosynthetic nutrient-use efficiency of Rhododendron lappon-icum leaves as related to leaf nutrient status, leaf age and branch reproductive status. Funct Ecol 8:694–700

    Article  Google Scholar 

  • Karlsson PS, Nordell KO (1996) Effects of soil temperature on the nitrogen economy and growth of mountain birch seedlings near its presumed low temperature distribution limit. Ecoscience 3:183–189

    Article  Google Scholar 

  • Killham K (1994) Soil ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kinzel H (1982) Pflanzenökologie und Mineralstoffwechsel. Ulmer, Stuttgart

    Google Scholar 

  • Kinzel H (1983) Influence of limestone, silicates and soil pH on vegetation. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology 12: physiological plant ecology III. Springer, Berlin, pp 201–244

    Chapter  Google Scholar 

  • Kohls SJ, VanKessel C, Baker DD, Grigal DF, Lawrence DB (1994) Assessment of N2 fixation and N cycling by Dryas along a chronosequence within the forelands of the Athabasca Glacier, Canada. Soil Biol Biochem 26:623–632

    Article  CAS  Google Scholar 

  • Körner C (1984) Auswirkungen von Mineraldünger auf alpine Zwergsträucher. Verhandl Ges Oekol 12:123–136

    Google Scholar 

  • Körner C (1989) The nutritional status of plants from high altitudes. A worldwide comparison. Oecologia 81:379–391

    Article  PubMed  Google Scholar 

  • Körner C (2003) Limitation and stress—always or never? J Veg Sci 14:141–143

    Google Scholar 

  • Körner C (2011) Coldest places on earth with angiosperm plant life. Alp Bot 121:11–22

    Article  Google Scholar 

  • Körner C (2018) Concepts in empirical plant ecology. Plant Ecol Divers 11:405–428

    Article  Google Scholar 

  • Körner C, Cochrane PM (1985) Stomatal responses and water relations of Eucalyptus pauciflora in summer along an elevational gradient. Oecologia 66:443–455

    Article  PubMed  Google Scholar 

  • Körner C, Pelaez Menendez-Riedl S (1989) The significance of developmental aspects in plant growth analysis. In: Lambers H, Cambridge ML, Konings H, Pons TL (eds) Causes and consequences of variation in growth rate and productivity of higher plants. SPB Academic Publishers, The Hague, pp 141–157

    Google Scholar 

  • Körner C, Neumayer M, Pelaez Menendez-Riedl S, Smeets-Scheel A (1989) Functional morphology of mountain plants. Flora 182:353–383

    Article  Google Scholar 

  • Körner C, Diemer M, Schäppi B, Niklaus P, Arnone J (1997) The responses of alpine grassland to four seasons of CO2 enrichment: a synthesis. Acta Oecol 18:165–175

    Article  Google Scholar 

  • Körner C, Leuzinger S, Riedl S, Siegwolf RT, Streule L (2016) Carbon and nitrogen stable isotope signals for an entire alpine flora, based on herbarium samples. Alp Bot 126:153–166

    Article  Google Scholar 

  • Kosonen Z, Schnyder E, Hiltbrunner E, Thimonier A, Schmitt M, Seitler E, Thöni L (2019) Current atmospheric nitrogen deposition still exceeds critical loads for sensitive, semi-natural ecosystems in Switzerland. Atmos Environ 211:214–225

    Article  CAS  Google Scholar 

  • Larcher W (1977) Ergebnisse des IBP-Projekts ‘Zwergstrauchheide Patscherkofel.’ Sitzungsber Oesterr Akad Wiss, Mathem-Naturwiss Kl, Abt I 186:301–371

    Google Scholar 

  • Lescia P, Antibus RK (1986) Mycorrhizae of alpine fellfield communities on soils derived from crystalline and calcareous parent materials. Can J Bot 64:1691–1697

    Article  Google Scholar 

  • Lipson DA, Monson RK (1998) Plant-microbe competition for soil amino acids in the alpine tundra: effects of freeze–thaw and dry–rewet events. Oecologia 113:406–414

    Article  PubMed  Google Scholar 

  • Lipson DA, Schmidt SK, Monson RK (1999) Links between microbial population dynamics and nitrogen availability in an alpine ecosystem. Ecology 80:1623–1631

    Article  Google Scholar 

  • Lüdi W (1936) Experimentelle Untersuchungen an alpiner Vegetation. Ber Schweiz Bot Ges 46:632–681

    Google Scholar 

  • Macek P, Klimes L, Adamec L, Dolezal J, Chlumska Z, de Bello F, Dvorskry M, Rehakova K (2012) Plant nutrient content does not simply increase with elevation under the extreme environmental conditions of Ladakh, NW Himalaya. Arct Antarct Alp Res 44:62–66

    Article  Google Scholar 

  • Mavris C, Egli M, Plötze M, Blum JD, Mirabella A, Giaccai D, Häberli W (2010) Initial stages of weathering and soil formation in the Morteratsch proglacial area (Upper Engadine, Switzerland) Geoderma 155:359–371

    Google Scholar 

  • Mayer R, Erschbamer B (2017) Long-term effects of grazing on subalpine and alpine grasslands in the Central Alps, Austria. Basic Appl Ecol 24:9–18

    Article  Google Scholar 

  • Michelsen A, Schmidt IK, Jonasson S, Quarmby C, Sleep D (1996) Leaf 15N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non- and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia 105:53–63

    Article  PubMed  Google Scholar 

  • Miller AE, Bowman WD (2002) Variation in nitrogen15 natural abundance and nitrogen uptake traits among co-occurring alpine species: do species partition by nitrogen form? Oecologia 130:609–616

    Article  PubMed  Google Scholar 

  • Mooney HA, Billings WD (1961) Comparative physiological ecology of arctic and alpine populations of Oxyria digyna. Ecol Monogr 31:1–29

    Article  Google Scholar 

  • Morecroft MD, Woodward FI (1996) Experiments on the causes of altitudinal differences in the leaf nutrient contents size and ∂13C of Alchemilla alpina. New Phytol 134:471–479

    Article  CAS  Google Scholar 

  • Morecroft MD, Woodward FI, Marrs RH (1992a) Altitudinal trends in leaf nutrient contents, leaf size and ∂13C of Alchemilla alpina. Funct Ecol 6:730–740

    Article  Google Scholar 

  • Morecroft MD, Marrs RH, Woodward FI (1992b) Altitudinal and seasonal trends in soil nitrogen mineralization rate in the Scottish Highlands. J Ecol 80:49–56

    Article  Google Scholar 

  • Morford SL, Houlton BZ, Dahlgren RA (2011) Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock. Nature 477:78–81

    Article  CAS  PubMed  Google Scholar 

  • Morford SL, Houlton BZ, Dahlgren RA (2016) Direct quantification of long-term rock nitrogen inputs to temperate forest ecosystems. Ecology 97:54–64

    Article  PubMed  Google Scholar 

  • Mullen RB, Schmidt SK (1993) Mycorrhizal infection, phosphorus uptake, and phenology in Ranunculus adoneus: implications for the functioning of mycorrhizae in alpine systems. Oecologia 94:229–234

    Article  CAS  PubMed  Google Scholar 

  • Muthukumar T, Udaivan K, Shanmughavel P (2004) Mycorrhiza in sedges: an overview. Mycorrhiza 14:65–77

    Article  CAS  PubMed  Google Scholar 

  • Nadelhoffer K, Shaver G, Fry B, Giblin A, Johnson L, McKane R (1996) 15N natural abundances and N use by tundra plants. Oecologia 107:386–394

    Article  CAS  PubMed  Google Scholar 

  • Nagelmüller S, Hiltbrunner E, Körner C (2016) Critically low soil temperatures for root growth and root morphology in three alpine plant species. Alpine Botany 126:11–21

    Article  Google Scholar 

  • Neuwinger I (1972) Standortsuntersuchungen am Sonnberg im Sellrainer Obertal, Tirol. Mitt Forstl Bundes Versuchsanst Wien 96:177–207

    Google Scholar 

  • Niklaus PA, Körner C (1996) Responses of soil microbiota of late successional alpine grassland to long term CO2 enrichment. Plant Soil 184:219–229

    Article  CAS  Google Scholar 

  • Nosko P, Bliss LC, Cook FD (1994) The association of free-living nitrogen-fixing bacteria with the roots of high artic graminoids. Arct Alp Res 26:180–186

    Article  Google Scholar 

  • Oehl F, Körner C (2014) Multiple mycorrhization at the coldest place known for Angiosperm plant life. Alp Bot 124:193–198

    Article  Google Scholar 

  • Passama L, Ghorbal MH, Hamze M, Salsac L, Wacquant JP (1975) Sur quelques facteurs ecophysiologiques de differentiation entre calcicoles et calcifuges en milieu calcaire. Rev Ecol Biol Sol 12:309–327

    CAS  Google Scholar 

  • Pfandenhauer J, Klötzli F (2014) Vegetation der Erde. Springer, Berlin

    Google Scholar 

  • Posch A (1980) Bodenkundliche Untersuchungen im Bereich der Glocknerstrasse in den Hohen Tauern. In: Franz H (ed) Untersuchungen an alpinen Böden in den Hohen Tauern 1974–1978, Stoffdynamik und Wasserhaushalt. Veröff Oesterr MaB-Hochgebirgsprogr Hohe Tauern 3, Wagner, Innsbruck, pp 90–107

    Google Scholar 

  • Prescott CE, Graystone SJ, Helmisaari HS, Kastovska E, Körner C, Lambers H, Meier IC, Millard P, Ostonen I (2020) Surplus carbon drives allocation and plant-soil interactions. Trends Ecol Evol 35:1111–1117

    Google Scholar 

  • Psenner R, Nickus U (1986) Snow chemistry of a glacier in the Central Eastern Alps (Hintereisferner, Tyrol, Austria). Z Gletscherk Glazialgeol 22:1–18

    CAS  Google Scholar 

  • Rabotnov TA (1987) The biocoenoses of alpine tundra (for example, the northwestern Caucasus) (russ). Istadelstwo Nauka, Moscow ((in Russian))

    Google Scholar 

  • Read DJ, Haselwandter K (1981) Observations on the mycorrhizal status of some alpine plant communities. New Phytol 88:341–352

    Article  Google Scholar 

  • Rehder H (1970) Zur Ökologie insbesondere Stickstoffversorgung subalpiner und alpiner Pflanzengesellschaften im Naturschutzgebiet Schachen (Wettersteingebirge). Diss Bot 6

    Google Scholar 

  • Rehder H (1976a) Nutrient turnover studies in alpine ecosystems. I. Phytomass and nutrient relations in four mat communities of the northern calcareous Alps. Oecologia 22:411–423

    Article  CAS  PubMed  Google Scholar 

  • Rehder H (1976b) Nutrient turnover studies in alpine ecosystems. II. Phytomass and nutrient relations in the Caricetum firmae. Oecologia 23:49–62

    Article  CAS  PubMed  Google Scholar 

  • Rehder H (1994) Soil nutrient dynamics in East African alpine ecosystems. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Cambridge University Press, Cambridge, pp 223–228

    Chapter  Google Scholar 

  • Ruthsatz B (1977) Pflanzengesellschaften und ihre Lebensbedingungen in den Andinen Halbwüsten Nordwest-Argentiniens. Diss Bot 39

    Google Scholar 

  • Schäppi B, Körner Ch (1997) In situ effects of elevated CO2 on the carbon and nitrogen status of alpine plants. Funct Ecol 11:290–299

    Article  Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen Mineralization: Challenges of a changing paradigm. Ecology 85:591–602

    Article  Google Scholar 

  • Schinner F (1982) CO2-Freisetzung, Enzymaktivitäten und Bakteriendichte von Böden unter Spaliersträuchern und Polsterpflanzen in der alpinen Stufe. Acta Oecol 3:49–58

    CAS  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry. Academic Press, San Diego

    Google Scholar 

  • Schmidt SK, Reed SC, Nemergut DR, Grandy AS, Cleveland CC, Weintraub MN, Hill AW, Costello EK, Meyer AF, Neff JC, Martin AM (2008) The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils. Proc. R. Soc. B 275:2793–2802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott D, Billings WD (1964) Effects of environmental factors on standing crop and productivity of an alpine tundra. Ecol Monographs 34:243–270

    Article  Google Scholar 

  • Seastedt TR, Vaccaro L (2001) Plant species richness, productivity, and nitrogen and phosphorus limitations across a snowpack gradient in Alpine Tundra, Colorado, USA. Arct Antarct Alp Res 33:100–106

    Article  Google Scholar 

  • Shaver GR, Chapin FS III (1986) Effect of fertilizer on production and biomass of tussock tundra, Alaska, USA. Arct Alp Res 18:261–268

    Article  Google Scholar 

  • Skre O (1985) Allocation of carbon and nitrogen in Norwegian alpine plants. Aquilo Ser Bot 23:23–35

    CAS  Google Scholar 

  • Smeets N (1980) Mineralstoffverhältnisse in einem Krummseggenrasen (Caricetum vurvulae) im Glocknergebiet. Flora 170:51–67

    Article  CAS  Google Scholar 

  • Sundriyal RC, Joshi AP (1992) Annual nutrient budget for an alpine grassland in the Garhwal Himalaya. J Veg Sci 3:21–26

    Article  Google Scholar 

  • Theodose TA, Bowman WD (1997) Nutrient availability, plant abundance and species diversity in two alpine tundra communities. Ecology 78:1861–1872

    Article  Google Scholar 

  • Theodose TA, Jaeger CH, Bowman WD, Schardt JC (1996) Uptake and allocation of N-15 in alpine plants: Implications for the importance of competitive ability in predicting community structure in a stressful environment. Oikos 75:59–66

    Article  Google Scholar 

  • Tosca C, Labroue L (1981) Calcicoles et calcifuges: composition minerale de quelques especes des pelouses d’altitude. Oecol Plant 2:149–154

    CAS  Google Scholar 

  • Väre H, Vestberg M, Ohtonen R (1997) Shifts in mycorrhiza and microbial activity along an oroarctic altitudinal gradient in northern fennoscandia. Arct Alp Res 29:93–104

    Article  Google Scholar 

  • Waughman GJ, French JRJ, Jones K (1981) Nitrogen fixation in some terrestrial environments. In: Broughton WJ (ed) Nitrogen fixation. Volume I ecology. Clarendon Press, Oxford, pp 135–192

    Google Scholar 

  • Weih M, Karlsson PS (2001) Growth responses of mountain birch to air and soil temperature: is increasing leaf-nitrogen content an acclimation to lower air temperature? New Phytol 150:147–155

    Article  Google Scholar 

  • Wojciechowski MF, Heimbrook ME (1984) Dinitrogen fixation in alpine tundra, Niwot Ridge, Front Range, Colorado, USA. Arct Alp Res 16:1–10

    Article  Google Scholar 

  • Woodward FI (1986) Ecophysiological studies on the shrub Vaccinium myrtillus L. taken from a wide altitudinal range. Oecologia 70:580–586

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Qiao N, Xu X, Ouyang H (2011) Symbiotic nitrogen fixation by legumes in two Chinese grasslands estimated with the 15N dilution technique. Nutr Cycl Agroecosys 1:91–98

    Article  CAS  Google Scholar 

  • Yang Y, Siegwolf RTW, Körner C (2015) Species specific and environment induced variation of delta-13C and delta-15N in alpine plants. Front Plant Sci 6:Article 423

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Körner .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Körner, C. (2021). Mineral nutrition. In: Alpine Plant Life. Springer, Cham. https://doi.org/10.1007/978-3-030-59538-8_10

Download citation

Publish with us

Policies and ethics