Skip to main content

Military Vehicle Recognition with Different Image Machine Learning Techniques

  • Conference paper
  • First Online:
Information and Software Technologies (ICIST 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1283))

Included in the following conference series:

Abstract

Different neural network training systems are studied for image recognition of military vehicles, variable start layer transfer training models and own convolutional neural networks training from scratch. Since, there is limited openly available military recordings, labeled social media images are used for training. Furthermore, expanding the image-set by random data transformation. An implementation is made in terms of image augmentation handling as an internal loop that freezes all numerical parameters of the neural network training, while selecting continuously a slightly larger section of the training set including an increment part of artificial images added to the system. All models where trained for three vehicle and two situational environment classification cases. The transfer learning is based on two of the most widely used recognition networks, ResNet50 and Xception, with a variable number of last trained layers to max. twenty. The first being successfully transfer-trained with validation accuracy values of \({\approx }\)88%. In contrast Xception resulted on a over-fitted neural network with low validation accuracy and large loss values. Neither of the transferred schemes benefit from image augmentation. Moreover, in variable architecture training of convolutional networks, it was corroborated that different configurations of layers numbers/type/neurons adapt differently. Thus, a tailor-fit neural network combined with data augmentation strategy is the best approach with validation accuracy of \({\approx }\)86.4%, comparable to large transferred networks with a \({\approx }\)40 times smaller network architecture. Hence, requiring less computational resources. Data augmentation influenced an increment of validation accuracy values of \({\approx }\)9.2%, with the least accurate network trained gaining up to 20% on accuracy due inclusion of artificial images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). Software available from tensorflow.org. https://www.tensorflow.org/

  2. Chollet, F., et al.: Keras (2015). https://keras.io

  3. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, pp. 1800–1807 (2017). https://doi.org/10.1109/CVPR.2017.195

  4. Community, B.O.: Blender - a 3D modelling and rendering package. Blender Foundation, Stichting Blender Foundation, Amsterdam (2018). http://www.blender.org. Accessed 09 Mar 2020

  5. Bloice, M.D., Stocker, C., Holzinger, A.: Augmentor: an image augmentation library for machine learning. J. Open Source Softw. 2(19), 432 (2017). https://doi.org/10.21105/joss.00432

    Article  Google Scholar 

  6. Dvornik, N., Mairal, J., Schmid, C.: On the importance of visual context for data augmentation in scene understanding, pp. 1–15 (2018). http://arxiv.org/abs/1809.02492

  7. Google: Finland google maps. https://www.google.com/maps/@60.1647826,24.9493922,3a,75y,211.07h,75.51t/data=!3m6!1e1!3m4!1swNO3sM2NkZRKrTRN1gqQKg!2e0!7i13312!8i6656

  8. Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., Lew, M.S.: Deep learning for visual understanding: a review. Neurocomputing 187, 27–48 (2016)

    Article  Google Scholar 

  9. Habibzadeh Motlagh, M., Jannesari, M., Rezaei, Z., Totonchi, M., Baharvand, H.: Automatic white blood cell classification using pre-trained deep learning models: ResNet and inception. In: Tenth International Conference on Machine Vision, Proceedings of SPIE, vol. 1069612, p. 105 (2018). https://doi.org/10.1117/12.2311282

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  11. Hiippala, T.: Recognizing military vehicles in social media images using deep learning. In: IEEE International Conference on Intelligence and Security Informatics (ISI), pp. 60–65 (2017). https://github.com/DigitalGeographyLab/MilVehicles/

  12. Huttunen, H., Yancheshmeh, F.S., Ke, C.: Car type recognition with deep neural networks. In: Proceedings of IEEE Intelligent Vehicles Symposium, pp. 1115–1120 (2016). https://doi.org/10.1109/IVS.2016.7535529

  13. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. Department of Computer Science, Princeton University, USA (2009)

    Google Scholar 

  14. Kaggle: ImageNet Object Localization Challenge — Kaggle. https://www.kaggle.com/c/imagenet-object-localization-challenge/data. Accessed 03 Mar 2020

  15. Kornblith, S., Shlens, J., Le, Q.V.: Do better imagenet models transfer better? IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2661–2671 (2019). http://arxiv.org/abs/1805.08974

  16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  17. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  18. Microsoft: Download Kaggle Cats and Dogs Dataset from Official Microsoft Download Center. https://www.microsoft.com/en-us/download/details.aspx?id=54765. Accessed 03 Mar 2020

  19. Movshovitz-Attias, Y., Kanade, T., Sheikh, Y.: How useful is photo-realistic rendering for visual learning? In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 202–217. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_18

    Chapter  Google Scholar 

  20. Oliphant, T.: NumPy: A guide to NumPy. USA: Trelgol Publishing (2006). http://www.numpy.org/. Accessed 09 Mar 2020

  21. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Perez, L., Wang, J.: The Effectiveness of Data Augmentation in Image Classification using Deep Learning (2017). http://arxiv.org/abs/1712.04621

  23. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016). https://doi.org/10.1109/CVPR.2016.91

  24. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement (2018). http://arxiv.org/abs/1804.02767

  25. Rezende, E., Ruppert, G., Carvalho, T., Ramos, F., De Geus, P.: Malicious software classification using transfer learning of ResNet-50 deep neural network. In: Proceedings of the 16th IEEE International Conference on Machine Learning and Applications, ICMLA 2017, pp. 1011–1014 (2017). https://doi.org/10.1109/ICMLA.2017.00-19

  26. Sato, I., Nishimura, H., Yokoi, K.: APAC: Augmented PAttern Classification with Neural Networks, May 2015. http://arxiv.org/abs/1505.03229

  27. Yan, Y., Tan, Z., Su, N.: A data augmentation strategy based on simulated samples for ship detection in RGB remote sensing images. ISPRS Int. J. Geo-Inf. 8(6) (2019). https://doi.org/10.3390/ijgi8060276

Download references

Acknowledgments

The authors wish to acknowledge Ken Riippa, Jani Haapala and Tuomo Hiippala for labeled data and the CSC – IT Center for Science, Finland, for computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Legendre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Legendre, D., Vankka, J. (2020). Military Vehicle Recognition with Different Image Machine Learning Techniques. In: Lopata, A., Butkienė, R., Gudonienė, D., Sukackė, V. (eds) Information and Software Technologies. ICIST 2020. Communications in Computer and Information Science, vol 1283. Springer, Cham. https://doi.org/10.1007/978-3-030-59506-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59506-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59505-0

  • Online ISBN: 978-3-030-59506-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics