Skip to main content

Conditioned Text Generation with Transfer for Closed-Domain Dialogue Systems

  • Conference paper
  • First Online:
Statistical Language and Speech Processing (SLSP 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12379))

Included in the following conference series:

Abstract

Scarcity of training data for task-oriented dialogue systems is a well known problem that is usually tackled with costly and time-consuming manual data annotation. An alternative solution is to rely on automatic text generation which, although less accurate than human supervision, has the advantage of being cheap and fast. Our contribution is twofold. First we show how to optimally train and control the generation of intent-specific sentences using a conditional variational autoencoder. Then we introduce a new protocol called query transfer that allows to leverage a large unlabelled dataset, possibly containing irrelevant queries, to extract relevant information. Comparison with two different baselines shows that this method, in the appropriate regime, consistently improves the diversity of the generated queries without compromising their quality. We also demonstrate the effectiveness of our generation method as a data augmentation technique for language modelling tasks.

S. d’Ascoli and A. Coucke—Both authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/snipsco/nlu-benchmark/tree/master/2017-06-custom-intent-engines.

References

  1. Bahl, L.R., Jelinek, F., Mercer, R.L.: A maximum likelihood approach to continuous speech recognition. IEEE Trans. Pattern Anal. Mach. Intell. 5(2), 179–190 (1983)

    Article  Google Scholar 

  2. Bowman, S.R., Vilnis, L., Vinyals, O., Dai, A.M., Jozefowicz, R., Bengio, S.: Generating sentences from a continuous space (2015). arXiv preprint arXiv:1511.06349

  3. Cho, E., Xie, H., Lalor, J., Kumar, V., Campbell, W.: Efficient semi-supervised learning for natural language understanding by optimizing diversity. CoRR (2019)

    Google Scholar 

  4. Conneau, A., Kiela, D., Schwenk, H., Barrault, L., Bordes, A.: Supervised learning of universal sentence representations from natural language inference data (2017). arXiv preprint arXiv:1705.02364

  5. Coucke, A., et al.: Snips voice platform: an embedded spoken language understanding system for private-by-design voice interfaces (2018). arXiv preprint arXiv:1805.10190

  6. Hou, Y., Liu, Y., Che, W., Liu, T.: Sequence-to-sequence data augmentation for dialogue language understanding. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 1234–1245. Association for Computational Linguistics, Santa Fe (2018)

    Google Scholar 

  7. Hu, Z., Yang, Z., Liang, X., Salakhutdinov, R., Xing, E.P.: Toward controlled generation of text. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1587–1596. JMLR. org (2017)

    Google Scholar 

  8. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax (2016). arXiv preprint arXiv:1611.01144

  9. Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2013). arXiv preprint arXiv:1312.6114

  10. Kingma, D.P., Mohamed, S., Rezende, D.J., Welling, M.: Semi-supervised learning with deep generative models. In: Advances in Neural Information Processing Systems, pp. 3581–3589 (2014)

    Google Scholar 

  11. Kneser, R., Ney, H.: Improved backing-off for m-gram language modeling. In: 1995 International Conference on Acoustics, Speech, and Signal Processing, vol. 1, pp. 181–184. IEEE (1995)

    Google Scholar 

  12. Kurata, G., Xiang, B., Zhou, B.: Labeled data generation with encoder-decoder LSTM for semantic slot filling. In: INTERSPEECH (2016)

    Google Scholar 

  13. Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: a continuous relaxation of discrete random variables (2016). arXiv preprint arXiv:1611.00712

  14. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, ACL ’02, pp. 311–318. Association for Computational Linguistics, Stroudsburg (2002)

    Google Scholar 

  15. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: EMNLP (2014)

    Google Scholar 

  16. Saade, A., et al.: Spoken language understanding on the edge (2018). CoRR abs/1810.12735

    Google Scholar 

  17. Shin, Y., Yoo, K., Lee, S.G.: Utterance generation with variational auto-encoder for slot filling in spoken language understanding. IEEE Signal Process. Lett. 26, 1–1 (2019)

    Article  Google Scholar 

  18. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 28, pp. 3483–3491. Curran Associates Inc., New York (2015)

    Google Scholar 

  19. Sønderby, C.K., Raiko, T., Maaløe, L., Sønderby, S.K., Winther, O.: How to train deep variational autoencoders and probabilistic ladder networks. In: 33rd International Conference on Machine Learning (ICML 2016) (2016)

    Google Scholar 

  20. Stolcke, A.: Srilm-an extensible language modeling toolkit. In: Seventh International Conference on Spoken Language Processing (2002)

    Google Scholar 

  21. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms (2017). arXiv preprint arXiv:1708.07747

  22. Yoo, K.M., Shin, Y., Lee, S.: Data augmentation for spoken language understanding via joint variational generation. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (2019)

    Google Scholar 

  23. Zhao, J., Kim, Y., Zhang, K., Rush, A., LeCun, Y.: Adversarially regularized autoencoders. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning, Proceedings of Machine Learning Research, 10–15 Jul 2018, vol. 80, pp. 5902–5911. PMLR, Stockholmsmässan (2018)

    Google Scholar 

  24. Zhu, Y., et al.: Texygen: a benchmarking platform for text generation models. In: The 41st International ACM SIGIR Conference on Research & #38; Development in Information Retrieval, SIGIR ’18, pp. 1097–1100. ACM, New York (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Coucke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

d’Ascoli, S., Coucke, A., Caltagirone, F., Caulier, A., Lelarge, M. (2020). Conditioned Text Generation with Transfer for Closed-Domain Dialogue Systems. In: Espinosa-Anke, L., Martín-Vide, C., Spasić, I. (eds) Statistical Language and Speech Processing. SLSP 2020. Lecture Notes in Computer Science(), vol 12379. Springer, Cham. https://doi.org/10.1007/978-3-030-59430-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59430-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59429-9

  • Online ISBN: 978-3-030-59430-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics