Skip to main content

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

This chapter overviews the typology and evolution of flame retardants for building structures, their chemical composition and the functional contribution of the main components of the intumescent system to the fire-retardant mechanism. Approaches to the development of the most widely used materials based on the intumescent triad, including ammonium polyphosphate (APP), melamine (MA) and pentaerythritol (PE), are considered. The main groups of the required ingredients of these intumescent compositions are classified in detail, in accordance with the ideas about the functional contribution of each of them to the process of thermolytic synthesis of heat-insulating charring coatings: acid donors (ammonium phosphates), char formers (pentaerythritol, cellulose) and porophores (melamine, urea, guanidine and chloroparaffins). On the basis of a critical analysis of literary sources and experimental data obtained by the authors on the properties of substances that traditionally constitute intumescent materials, a hypothesis has been put forward that established ideas about the functional contribution of the discussed components of intumescent systems and the nature of the processes are inaccurate. The results of authors’ own research are presented, which allow to review and clarify the role of the main ingredients in the synthesis of charred layer. The authors experimentally confirmed and theoretically substantiated the new data on the behavior of pentaerythritol during thermolysis of the triad intumescent system of melamine–pentaerythritol–ammonium polyphosphate, which exclude pentaerythritols esterification by phosphoric acids under the considered conditions. It is shown that today there is no coherent concept that could be the scientific and technological foundation for creating fire-retardant intumescent compositions and could unambiguously describe the physicochemical nature of the processes of thermolytic synthesis of charred heat-insulating layers of intumescent coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bushmanova AV, Barabanshchikov YuG, Semenov KV et al (2017) Thermal cracking resistance in massive foundation slabs in the building period. Mag Civ Eng 8:193–200. https://doi.org/10.18720/MCE.76.17

  2. Lazovskaya T, Tarkhov D, Vasiliev A (2018) Multilayer solution of the heat equation. Comput Intell Res 736:17–22. https://doi.org/10.1007/978-3-319-66604-4_3

  3. Rudskoy AI, Kozhaspirov GE, Cliber J et al (2016) Modern metal materials and processes. Mater Phys Mech 25(1):1–8

    Google Scholar 

  4. Parshikov RA, Rudskoy AI, Zolotov AM et al (2016) Analysis of the features of plastic flow of a sample under severe plastic deformation. Rev Adv Mater 45(1–2):67–75

    Google Scholar 

  5. Zaborova D, Vieira G, Musorina T et al (2018) Experimental study of the thermal stability of building materials. Adv Intell Syst Comput 692:482–489. https://doi.org/10.1007/978-3-319-70987-1_51

  6. Rasha IK, Pertseva ON, Lazareva AYu et al (2017) Computational modeling of random stress distribution for wooden structures. Civ Eng J 69(1):23–33. https://doi.org/10.18720/MCE.69.2

  7. Al Ali M, Bajzecerova V, Kvocak V (2017) Design methods of timber-concrete composite ceiling structure. Mag Civ Eng 5:88–95. https://doi.org/10.18720/MCE.73.8

  8. Sainov MP, Zverev AO (2017) Workability of high rockfill dam with a polymer face. Mag Civ Eng 7:76–83. https://doi.org/10.18720/MCE.75.7

  9. Struchkova AY, Barabanshchikov YuG, Semenov KS et al (2018) Heat dissipation of cement and calculation of crack resistance of concrete massifs. Mag Civ Eng 2:128–135. https://doi.org/10.18720/MCE.78.10

  10. Rybakov VA, Ananeva IA, Rodicheva AO et al (2017) Stress-strain state of composite reinforced concretes lab elements under fire activity. Mag Civ Eng 6:161–174. https://doi.org/10.18720/MCE.74.13

  11. Benin A, Semenov S, Semenov A et al (2017) Identification of parameters for the model of elastoplastic damage for superheated concrete. In: The MATEEK 107 conference network. https://doi.org/10.1051/matecconf/201710700042

  12. Indemitsev DA, Semenov BN, Skubov DYu et al (2018) Structural transformations of the material under dynamic loading. Adv Struct Mater 87:185–195. https://doi.org/10.1007/978-3-319-73694-5_11

  13. Vavilov DS, Dendetsev DA, Semenov BN et al (2017) On structural transformations in a material under nonstationary actions. Mech Solids 52(4):391–396. https://doi.org/10.3103/S0025654417040057

  14. Bardin A, Korotkov A, Kazarnovsky V (2017) Restriction of fire resistance of steel transport structures. Simplified calculation methods. IOP Conf Ser Earth Environ Sci 90(1):012207. https://doi.org/10.1088/1755-1315/90/1/012207

  15. Matveev MA, Kolbasnikov NG, Kononov AA (2017) Causes of high-temperature permeability of single-crystal steels. Proc Indian Inst Metals 70(8):2193–2204. https://doi.org/10.1007/s12666-017-1042-9

  16. Kazakov A, Kiselev D, Kazakova E et al (2017) Quantitative description of microstructural strapping in steels. Charact Charact Mater 6(3):224–236. https://doi.org/10.1520/MPC20160009

  17. Zhukov VA (2017) Dislocation-phonon mechanism and interpolation dependence of fatigue-damaged structural steel. Lect Notes Mech Eng 155–164. https://doi.org/10.1007/978-3-319-53363-6_16

  18. Apostolopoulos S, Drakakaki A, Apostolopoulos A et al (2017) Characteristic defects—corrosion damage and mechanical behavior of two-phase reinforcement. Mater Phys Mech 30(1):1–19

    Google Scholar 

  19. Kuzkin VA, Krivtsov AM (2017) Fast and slow thermal processes in harmonic scalar lattices. J Phys Condens Matter 29(50):505401. https://doi.org/10.1088/1361-648X/aa98eb

  20. Loganina VI, Pyshkina IS, Martyashin GV (2017) Effect of the supplement based on calcium hydrosilicates on the resistance of lime coatings. Mag Civ Eng 4:20–27. https://doi.org/10.18720/MCE.72.3

  21. Cherkashin AV, Pykhtin KA, Begich YE et al (2017) Mechanical properties of nanocarbon modified cement. Mag Civ Eng 4:54–61. https://doi.org/10.18720/MCE.72.7

  22. Nizina TA, Balykov AS, Volodin VV et al (2017) Fiber fine-grained concretes with polyfunctional modifying additives. Mag Civ Eng 4:73–83. https://doi.org/10.18720/MCE.72.9

  23. Bulanov PE, Mavliev LF, Vdovin EA et al (2017) The interaction between the kaolinite or bentonite clay and plasticizing surface-active agents. Mag Civ Eng 7:171–179. https://doi.org/10.18720/MCE.75.17

  24. Barabanshchikov YuG, Belyaeva SV, Arkhipov IE et al (2017) Influence of superplasticizers on the concrete mix properties. Mag Civ Eng 6:140–146. https://doi.org/10.18720/MCE.74.11

  25. Benin AV, Semenov AS, Semenov SG et al (2017) Methods of identification of concrete elastic-plastic-damage models. Mag Civ Eng 8:279–297. https://doi.org/10.18720/MCE.76.24

  26. Kuz’min MP, Larionov LM, Kondratiev VV et al (2017) Burnt rock of the coal deposits in the concrete products manufacturing. Mag Civ Eng 8:169–180. https://doi.org/10.18720/MCE.76.15

  27. Gammeltoft P, Hobdari B (2017) Multinational corporations with emerging markets, international knowledge flows and innovations. Int J Technol Manag 74(1–4):1–22. https://doi.org/10.1504/IJTM.2017.083619

  28. Galyachev AV, Alkhimenko AI (2017) Features of structural elements of facade cassettes made of fine ceramics. Civ Eng J 69(1):64–76. https://doi.org/10.18720/MCE.69.6

  29. Korotchenko IA, Ivanov EN, Manovitsky SS et al (2017) Deformation of concrete creep in calculating the state of thermal stresses of massive concrete and reinforced concrete structures. Civ Eng J 69(1):56–63. https://doi.org/10.18720/MCE.69.5

  30. Denisov AV (2017) The impact of superplasticizers on the radiation changes in Portland cement stone and concretes. Mag Civ Eng 5:70–87. https://doi.org/10.18720/mce.73.7

  31. Fryanova KO, Perminov VA (2017) Impact of forest fires on buildings and structures. Mag Civ Eng 7:15–22. https://doi.org/10.18720/MCE.75.2

  32. Thirumal M (2016) Recent developments of intumescent fire protection coatings for structural steel: a review. J Fire Sci 34(2):120–163

    Google Scholar 

  33. Tramm H, Clar C, Kuhnel P et al (1938) US Patent 2,106,938, Feb 1938

    Google Scholar 

  34. Vandersall HL (1971) Intumescent coating systems. Their development and chemistry. J Fire Flammabl 2:97–140

    Google Scholar 

  35. Wang JQ, Chow WK (2005) A brief review on fire retardants for polymeric foams. J Appl Polym Sci 97:366–376

    Google Scholar 

  36. Camino C, Costa L, Martinasso G (1989) Intumescent fireretardant systems. Polym Degrad Stab 23:359–376

    Google Scholar 

  37. Troitzsch JH (1983) Methods for the fire protection of plastics and coatings by flame retardant and intumescent systems. Prog Organic Coat 11:41–69

    Google Scholar 

  38. Olivera RBRS, Moreno ALJ, Vieira LCM (2017) Intumescent paint as fire protection coating. Struct Mater J 10(1):220–231

    Google Scholar 

  39. Horrocks AR, Price D (2001) Fire retardant materials. Woodhead Publishing Limited, Cambridge

    Google Scholar 

  40. Sobur SV (2014) Fire protection of materials and structures: course and reference book, 5-th edn, revised. Moscow, Russia

    Google Scholar 

  41. Taubkin SN, Kolganov MN, Levites FA (2003) Flame retardant intumescent paints. In: Low flammability polymer materials: materials of the 5th international conference. Volgograd, Russia

    Google Scholar 

  42. Smirnov NV, Bulgakov VV, Etumyan AS et al (2012) The results and prospects of research on assessing fire risk of building, textile materials and the effectiveness of fire protection means. Anniversary collected papers of FSBI VNIIPO MChS of Russia. Moscow, Russia

    Google Scholar 

  43. Ignatenkova EB, Chernova NS, Zybina OA (2010) Fire protection of cable products with intercalated graphite-based intumescent materials. Problems of film and television development, a collection of scientific papers of St. Petersburg State University of Film and Television 22:202–205

    Google Scholar 

  44. Zavyalov DE, Zybina OA, Mnatsakanov SS et al (2009) Flame retardant intumescent compositions based on intercalated graphite. Chem Ind 86(8):414–417

    Google Scholar 

  45. Mnatsakanov CS, Chernova NS, Zybina OA et al (2012) A method for obtaining a vibration-absorbing flame retardant composition. RF Patent 2470966, 27 Dec 2012

    Google Scholar 

  46. Chiang CL, Hsu SW (2010) Novel epoxy/expandable graphite halogen-free flame retardant composites−preparation, characterization, and properties. J Polym Res 17(3):315–323

    Google Scholar 

  47. Saidaminov MI, Maksimova NV, Kuznetsov NG et al (2012) Fire protection performance of oxidized graphite modified with boric acid. Inorganic Mater 48(3):258–262

    Google Scholar 

  48. Gravit MV (2016) Basic requirements for flame retardant coatings of buildings, structures, outdoor installations: a course book. Saint Petersburg, Russia

    Google Scholar 

  49. Bolodian I, Melikhov A, Tanklevskiy L (2017) Fire safety arrangement of inhabited pressurized compartments of manned spacecraft. Acta Astronaut 135:92–99. https://doi.org/10.1016/j.actaastro.2016.10.003

  50. Efremov SV, Romantsova OV, Ulybin VB (2018) Safety of the monopropellant’s production at the purification stage. Acta Astronaut. https://doi.org/10.1016/j.actaastro.2018.01.018

  51. Bolodyan IA, Melikhov AS, Tanklevskiy LT (2017) Analysis of statistical data about design of fire-safe materials in oxygen-rich atmosphere of inhabited pressurized compartments of Russian manned spacecraft. Acta Astronaut. https://doi.org/10.1016/j.actaastro.2017.10.019

  52. Bolodian I, Melikhov A, Tanklevskiy L (2017) Automatic fire-extinguishing system for inhabited pressurized compartments of manned spacecraft. Acta Astronaut. https://doi.org/10.1016/j.actaastro.2016.10.002

  53. Tanklevskiy L, Tsoy A, Snegirev A (2017) Electrically controlled dynamic sprinkler activation: Computational assessment of potential efficiency. Fire Saf J. https://doi.org/10.1016/j.firesaf.2017.04.019

  54. Vilken V, Kalinina O, Dubgorn A (2018) Specificity of multi-storey construction and real estate markets in the regional economy: analysis of Russian practice. E3S Web Conf 33:03012. https://doi.org/10.1051/e3sconf/20183303012

  55. Vasilyev A, Tarkhov D, Bolgov I et al (2016) Multilayer neural network models based on experimental data for processes of sample deformation and destruction. In: CEUR workshop proceedings

    Google Scholar 

  56. Burlov VG, Grobitski AM, Grobitskaya AM (2016) Construction management in terms of indicator of the successfully fulfilled production task. Mag Civ Eng. https://doi.org/10.5862/MCE.63.5

  57. Frost & Sullivan (2013) Global intumescent coatings market to expand steadily. http://www.frost.com/srch/catalog-search.do?searchType=sub&rd_submit=Go&queryText=intumescent+coating+market&sortBy=R. Accessed 12 Feb 2020

  58. Tomakhova A, Zybina O, Suprun V et al (2019) Development of led-curable intumescent polymer coatings for fire protection of building constructions. IOP Conf Ser Mater Sci Eng (IOP Publishing). https://doi.org/10.1088/1757-899X/666/1/012089

  59. Puri RG, Khanna AS, Ravindra G (2017) Intumescent coatings: a review on recent progress. J Coat Technol Res 14(1):1–20

    Google Scholar 

  60. Khalturinsky NA, Rudakova TA (2013) On the formation mechanism of flame retardant intumescent coatings. Bull South Federal Univ 8:215–220

    Google Scholar 

  61. Zybina OA, Varlamov AV, Mnatsakanov SS (2010) Problems of the technology of char-forming flame retardant compositions. Center for Development of Scientific Cooperation. Novosibirsk, Russia

    Google Scholar 

  62. Zybina OA, Babkin OE (2018) On making recipes of efficient flame retardant paints for building structures. Paintwork Mater Appl 3:36–39

    Google Scholar 

  63. Aseeva RM, Zaikov GE (1981) Burning of polymer materials. Moscow, Russia

    Google Scholar 

  64. Berlin AA (1996) Burning of polymers and low flammability polymer materials. Soros Educ J 9:57–69

    Google Scholar 

  65. Golod VM, Sufiarov VS (2017) Evolution of structural and chemical heterogeneity by rapid solidification by spraying gas. Ser Rep IOP: Mater Sci Technol 192(1):012009. https://doi.org/10.1088/1757-899X/192/1/012009

  66. Bourbigot S, Le Bras M, Duquesne S et al (2004) Recent advances for intumescent polymers. Macromol Mater Eng 289:499–511

    Google Scholar 

  67. Nenakhov SA, Pimenova VP (2010) Physics and chemistry of ammonium polyphosphate-based foaming fire-retardant coatings. Literature review. Fire Explos Saf 8:11–58

    Google Scholar 

  68. Mashlyakovsky LN, Lykov AD, Repkin VYu (1989) Low flammability organic coatings. Leningrad, Russia

    Google Scholar 

  69. Zobacheva AYu, Nemov AS, Borovkov AI et al (2017) Designing and modeling of structural materials of a three-component composite material. Mater Phys Mech 34(1):51–58. https://doi.org/10.18720/MPM.3412017_6

  70. Shymchenko AV, Tereshchenko VV, Ryabov YuA et al (2017) Review of computational approaches to the modeling of modern materials in accordance with modern advanced production trends. Mater Phys Mech 32(3):328–352

    Google Scholar 

  71. Jimenez M, Duquesne S, Bourbigot S (2006) Intumescent fire protective coating: toward a better understanding of their mechanism of action. Thermochim Acta 449:16–26

    Google Scholar 

  72. Thewes V (2014) Composition for an intumescent fire protection coating, fire protection coating, its use and manufacturing process for an intumescent fire protection coating. USA Patent 20140005298, 02 Jan 2014

    Google Scholar 

  73. Wierzbicki M, Fernando J, Packard K (2014) Intumescent material for fire protection. USA Patent 8729155, 20 May 2014

    Google Scholar 

  74. Bilbija D (2014) Fire resistant coatings. USA Patent 20140094539, 03 May 2014

    Google Scholar 

  75. Kreh R (2013) Intumescent fireproofing systems and methods. USA Patent, 27 Aug 2013

    Google Scholar 

  76. Taylor A, Butterfield S, Darryl Green J et al (2013) Intumescent coating compositions. USA Patent 8461244, 03 Jun 2013

    Google Scholar 

  77. Kreh R (2013) Intumescent fireproofing systems and methods. USA Patent 20130090410, 11 Apr 2013

    Google Scholar 

  78. Kotzev D, Diakoumakos C (2013) Flame retardant polymer compositions. USA Patent 8372899, 12 Feb 2013

    Google Scholar 

  79. Winterowd J, Robak G (2013) Fire-resistant wood product. USA Patent 20130000239, 03 Jan 2013

    Google Scholar 

  80. Kasowski R (2012) Protective barrier composition comprising reaction of phosphorous acid with amines applied to a substrate. USA Patent 8212073, 03 Jul 2012

    Google Scholar 

  81. Schmitt G, Neugebauer P (2012) Intumescent coating composition with enhanced metal adhesion. USA Patent 20120164462 28 Jun 2012

    Google Scholar 

  82. Wade R (2011) Intumescent composition. USA Patent 20110311830, 22 Dec 2011

    Google Scholar 

  83. Wierzbicki M, Fernando J, Packard K et al (2011) Intumescent material for fire protection. USA Patent 20110136937, 09 Jun 2011

    Google Scholar 

  84. Brown G, Eaton R (2011) Flame-retardant polyolefin/thermoplastic polyurethane composition. USA Patent 20110011616, 20 Feb 2011

    Google Scholar 

  85. Aslin D (2011) Fire resistant materials. USA Patent 7863342, 04 Jan 2011

    Google Scholar 

  86. Reinheimer A (2010) Intumescing, multi-component epoxide resin-coating composition for fire protection and its use. USA Patent 7820736, 26 Oct 2010

    Google Scholar 

  87. Breen C, Thompson S (2010) Water based intumescent coating formulation especially suitable for structural steel components in civil engineering. USA Patent 20100209645, 19 Aug 2010

    Google Scholar 

  88. Aslin D (2011) Fire resistant materials. USA Patent 7772294, 10 Aug 2011

    Google Scholar 

  89. Schmitt G, Neugebauer P, Scholl S et al (2010) Resin system for intumescent coating with enhanced metal adhesion. USA Patent 20100190886, 29 Jul 2010

    Google Scholar 

  90. Reyes J (2010) Fire resistant thermoplastic or thermoset compositions containing an intumescent specialty chemical. USA Patent 20100086268, 08 May 2010

    Google Scholar 

  91. Zavyalov DE, Zybina OA, Manatsakanov SS (2014) Catalytic effect of intercalated graphite on fire retardant intumescent composition. Abstract at the international scientific and technical conference “High-Tech Technologies of Functional Materials”

    Google Scholar 

  92. Gardelle B, Duquesne S, Vandereecken P et al (2013) Resistance to fire of curable silicone/expandable graphite based coating: effect of the catalyst. Eur Polym J 49(8):2031–2041

    Google Scholar 

  93. Yakunina IE, Nechaev KV, Zybina OA et al (2011) Developing flame retardant intumescent compositions for metal structures. Abstracts at the international scientific-practical conference “Multiscale modeling of structures and nanotechnology”

    Google Scholar 

  94. Osipov IA, Zybina OA (2014) Developing fire-retardant sealing composition for sealing expansion joints of building structures. J Civ Eng 8(52):20–24

    Google Scholar 

  95. Makeenko AV, Larionova TV, Klimova-Korsmik OG et al (2017) Synthesis of complex oxides with a garnet structure by spray drying an aqueous solution of a salt. Tech Phys 62(4):613–618. https://doi.org/10.1134/S1063784217040168

  96. Bobrynina E, Alkhalaf AA, Shamshurin A et al (2017) Synthesis of composite powders Fe-ZrO2 by the thermochemical method. Key Tech Mater 721 KEM. https://doi.org/10.4028/www.scientific.net/KEM.721.285

  97. Kurapova OYu, Glumov OV, Pivovarov MM et al (2017) Structure and conductivity of ceramics from calcium stabilized zirconium, made from lyophilized nanopowder. Rev Adv Mater Sci 52(1–2):134–141

    Google Scholar 

  98. Bogdanov SP, Garshin AP (2017) Production of composite materials from refractory powders with surface nanofilms. Refract Ind Ceram 58(2):202–207. https://doi.org/10.1007/s11148-017-0081-4

  99. Bogdanov SP, Garshin AP (2017) Refractory core powders for the additive industry. Solid State Phenom 265 SSP. https://doi.org/10.4028/www.scientific.net/SSP.265.529

  100. Lisovenko DS, Baimova YuA, Rysaeva LK et al (2016) Equilibrium diamond-like carbon nanostructures with cubic anisotropy: elastic properties. Phys Status Solidi (B) Basic Res 253(7):1295–1302. https://doi.org/10.1002/pssb.201600049

  101. Alalykina LV, Fedoreeva LA, Chernaya IC et al (1995) Raw material mixture for flame retardant coating. RF Patent 2034816, 10 May 1995

    Google Scholar 

  102. Shuklin CG et al (2001) Flame retardant polymer composition for coatings. RF Patent 2176258, 27 Nov 2001

    Google Scholar 

  103. Sakharov AM, Krukovsky SP, Yarosh AA et al (2006) A method for obtaining phosphorus-containing triaminotoluene formaldehyde resin. RF Patent 2285015, 10 Oct 2006

    Google Scholar 

  104. Sakharov AM, Yarosh AA, Krukovsky SP et al (2008) A method for obtaining triaminotoluene phosphate urea-formaldehyde resin. RF Patent 2328507, 10 Jul 2008

    Google Scholar 

  105. Ustinov A, Zybina O, Tanklevsky L et al (2018) Intumescent coatings with improved properties for high-rise construction. E3S Web Conf

    Google Scholar 

  106. Ustinov A, Zybina O, Tomakhova A et al (2018) The enhancement of operating properties of intumescent fire-protective compositions. MATEC Web Conf

    Google Scholar 

  107. Bhatnagar VM, Vergnaud JM (1983) Fire retardant paints. Paint India 7–9:15–28

    Google Scholar 

  108. Porokhov AM, Knunyants IL (1988) Chemical encyclopedia. Moscow, Russia

    Google Scholar 

  109. Antonov AV, Reshetnikov IS, Khalturinsky NA (1999) The burning of char-forming polymer systems. Success Chem 68(7)663–673

    Google Scholar 

  110. Dobryansky AF, Tishchenko VV, Gavrilov BG (1967) Transformation of oil hydrocarbons. Leningrad, Russia

    Google Scholar 

  111. Dobryansky AF, Markin GV, Khimtseva MA (1962) Thermocatalytic conversion of 2,2-dihydroxymethylbutanol-1 on aluminosilicate catalyst. Petrochemicals 2:45–56

    Google Scholar 

  112. Kabanov VA, Kargin VA (1972) Encyclopedia of polymers. Moscow, Russia

    Google Scholar 

  113. Barg EI (1954) Technology of synthetic plastics. Leningrad, Russia

    Google Scholar 

  114. Oleinikov KV, Trotsenko PA, Zybina OA et al (2008) The main components of flame retardant intumescent materials and their role in forming protective charred layers. Chem Ind 85(1):49–52

    Google Scholar 

  115. Levites FA, Barabanova LP (1979) Flame retardant intumescent compounds. Review of patent descriptions. VNIIPO 6:21–25

    Google Scholar 

  116. Konkin AA (1974) Carbon and other heat-resistant fiber materials. Moscow, Russia

    Google Scholar 

  117. Byrne GA, Gardiner D, Holmes FH (1966) The pyrolysis of cellulose and the action of flame-retardants. III. Further analysis and investigations of products. J Appl Chem 16(3):81–88

    Google Scholar 

  118. Tang BК, Neill WK (1964) Thermal analysis of high polymers. J Polym Sci 6:65–81

    Google Scholar 

  119. Schmidt D, Jones W (1962) Chemical engineering progress

    Google Scholar 

  120. Vohler O, Sperk E (1966) Berichte der Deutschen Keramischen Gesellschaft

    Google Scholar 

  121. Zhdanov YuV (1979) Chemistry and technology of polyphosphates. Moscow, Russia

    Google Scholar 

  122. Avdeev VV, Godunov IA, Shkirov VA et al (2002) A method for obtaining a highly condensed ammonium polyphosphate. RF Patent 2180890, 27 Mar 2002

    Google Scholar 

  123. Wade CA, Callaghan SJ, Strickland GS et al (2001) Investigation of methods and protocols for regulating the fire performance of materials with applied fire retardant surface coatings. Fire Code Research Re-form, FCRC Project 2 B-3

    Google Scholar 

  124. Fukumura C, Inoue K, Iwata M et al (1993) A melamine-coated ammonium polyphosphate and a process for producing the same. EU Patent 19940103258, 07 Mar 1993

    Google Scholar 

  125. Wu K, Wang Z, Hu Y (2008) Microencapsulated ammonium polyphosphate with urea–melamine–formaldehyde shell: preparation, characterization, and its flame retardance in polypropylene. Polym Adv Technol 19(8):1118–1125

    Google Scholar 

  126. Tang Q, Wang B, Shi Y et al (2013) Microencapsulated ammonium polyphosphate with glycidyl methacrylate shell: application to flame retardant epoxy resin. Ind Eng Chem Res 52(16):5640–5647

    Google Scholar 

  127. Zybina OA, Silnikov MV, Gravit MV (2016) Thermoanalytical research study of various grades of ammonium polyphosphate for intumescent flame retardant compositions. Iss Def Technol 9–10(99–100):76–79

    Google Scholar 

  128. Pagella C, Raffaghello F, De Favery DM (1998) Differential scanning calorimetry of intumescent coatings. Polym Paint Colour J 188(4402):16–18

    Google Scholar 

  129. Nenakhov SA (2010) Influence of gas-forming agent concentration on the development patterns of the charred layer of flame retardants. Fire Explos Saf 19(3):14–26

    Google Scholar 

  130. Camino G, Costa L, Trossarelly L (1984) Study of mechanism of intumescence in fire retardant polymers. Part III: Effect of urea on ammonium polyphosphate-pentaerythritol system. Polym Degrad Stab 7:221–229

    Google Scholar 

  131. Berezin BD, Berezin DB (1999) Course in modern organic chemistry. Moscow, Russia

    Google Scholar 

  132. Belov PS (1965) Fundamentals of petrochemical synthesis technology. Moscow, Russia

    Google Scholar 

  133. Kiselev VS, Sorokin MF (1947) On the mechanism of the melamine formaldehyde reaction. The works of D. Mendeleev University of Chemical Technology of Moscow 12:25–34

    Google Scholar 

  134. Sorenson W, Campbell T (1963) Preparative methods of polymer chemistry. Moscow, Russia

    Google Scholar 

  135. Polyakova VI, Zybina OA, Mnatsakanov SS (2015) The functional contribution of titanium dioxide to the thermolytic synthesis of intumescent coatings. In: Science-driven technology of functional materials: proceedings of the international scientific and technical conference. Saint Petersburg, Russia

    Google Scholar 

  136. Zybina OA, Ustinov AA, Andreev AV (2019) On the impact caused by titanium dioxide of different trademarks on the properties of intumescent fire-protective coatings. Mater Sci Forum 945:212–217

    Google Scholar 

  137. Ti-pure titanium dioxide from chemours. https://www.chemours.com/DTT/ru_RU/Coatings/more_about_tipure.html. Accessed 12 Feb 2020

  138. Drevelle C, Lefebvre J, Duquesne S et al (2005) Thermal and fire behaviour of ammonium polyphosphate/acrylic coated cotton. Polym Degrad Stab 88:130–137

    Google Scholar 

  139. Shugurov SM, Kurapova OYu, Lopatin SI et al (2017) Thermodynamic properties of the La2O3-ZrO2 system by the Knudsen effusion mass spectrometry at high temperature. Rapid Commun Mass Spectrom 31(23):2021–2029. https://doi.org/10.1002/rcm.7997

  140. Chemours. On surface treatment of DuPont brand. https://www.chemours.com/DTT/ru_RU/assets/downloads/Surface_coatings.pdf. Accessed 12 Feb 2020

  141. Frim A, Zhukov R (2010) Thin film flame retardant intumescent coatings for structural metal. Paintwork Mater Appl 10:41–47

    Google Scholar 

  142. Weil E (2011) Fire-protective and flame-retardant coatings—a state-of-the-art review. J Fire Sci 29:259–295

    Google Scholar 

  143. Aziz H, Ahmad F, Zia-ul-Mustafa M (2014) Effect of titanium oxide on fire performance of intumescent fire retardant coating. Adv Mater Res 935:224–228

    Google Scholar 

  144. Zybina OA, Varlamov AV, Chernova NS et al (2009) On the role and transformations of the components of fire-retardant intumescent paint compositions in thermolysis. J Appl Chem 82(4):1445–1449

    Google Scholar 

  145. Amir N, Ahmad F, Hazwan M et al (2017) Synergistic effects of titanium dioxide and zinc borate on thermal degradation and water resistance of epoxy based intumescent fire retardant coatings. Key Eng Mater 740:41–47

    Google Scholar 

  146. Hongfei L, Zhongwu H, Zhang S et al (2015) Effects of titanium dioxide on the flammability and char formation of water-based coatings containing intumescent flame retardants. Prog Organic Coat 78:318–324

    Google Scholar 

  147. Smirnov NV, Bulaga SN, Duderov NG (2011) Assessing the quality of fire protection and using the type of flame retardant coatings at facilities: guidelines of FGU VNIIPO. Moscow, Russia

    Google Scholar 

  148. Ilatovskaya M, Savinykh G, Fabrichnaya O (2017) Thermodynamic description of the ZrO2-TiO2-Al2O3 system based on experimental data. J Eur Ceram Soc 37(10):3461–3469. https://doi.org/10.1016/j.jeurceramsoc.2017.03.064

  149. Sayenko I, Ilatovskaya M, Savinykh G et al (2018) Experimental study of phase relations and thermodynamic properties in the system ZrO2-TiO2. J Am Ceram Soc 101(1):386–399. https://doi.org/10.1111/jace.15176

  150. Antonyuk SN (2005) Catalytic transformations of methanol aimed at obtaining methyl formate, dimethyl ester, carbon monoxide and hydrogen. Moscow, Russia

    Google Scholar 

  151. Sukhanov MV, Schelokov IA, Ermilova MM et al (2008) The catalytic properties of sodium zirconium molybdate phosphate in transformation reactions of methanol. J Appl Chem 81(1):19–24

    Google Scholar 

  152. Xu M, Lunsford JH, Goodman DW et al (1997) Synthesis of dimethyl ether (DME) from methanol over solid-acid catalysts. Appl Catal 149:289–301

    Google Scholar 

  153. Manriquez ME, Lopez T, Gomez R et al (2004) Preparation of TiO2-ZrO2 mixed oxides with controlled acid-basic properties. J Mol Catal 220:229–237

    Google Scholar 

  154. Konakov VG, Kurapova OY, Borisova NV et al (2017) Synthesis and phase formation in MxOy-ZrO2 nanosized precursors (M = Zn2+, Cd2+, Pb2+, Bi3+). J Sol-Gel Sci Technol 82(1):214–223. https://doi.org/10.1007/s10971-016-4278-7

  155. Kurapova OYu, Golubev SN, Ushakov VM et al (2017) Stabilization of solid solutions based on cubic zirconium dioxide obtained by cryochemical methods: thermodynamic and kinetic factors. Rev Adv Mater Sci 48(2):147–155

    Google Scholar 

  156. Charmor for Intumescent Coatings (2010) Promotional materials. http://www.chemcam.it/Charmor.pdf. Accessed 12 Feb 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Zybina .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zybina, O., Gravit, M. (2020). Basic Ingredients of Intumescent Compositions. In: Intumescent Coatings for Fire Protection of Building Structures and Materials. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-59422-0_1

Download citation

Publish with us

Policies and ethics