Abstract
Once exotic, computational accelerators are now commonly available in many computing systems. Graphics processing units (GPUs) are perhaps the most frequently encountered computational accelerators. Recent work has shown that GPUs are beneficial when analyzing massive data sets. Specifically related to this study, it has been demonstrated that GPUs can significantly reduce the query processing time of database bitmap index queries. Bitmap indices are typically used for large, read-only data sets and are often compressed using some form of hybrid run-length compression.
In this paper, we present three GPU algorithm enhancement strategies for executing queries of bitmap indices compressed using Word Aligned Hybrid compression: 1) data structure reuse 2) metadata creation with various type alignment and 3) a preallocated memory pool. The data structure reuse greatly reduces the number of costly memory system calls. The use of metadata exploits the immutable nature of bitmaps to pre-calculate and store necessary intermediate processing results. This metadata reduces the number of required query-time processing steps. Preallocating a memory pool can reduce or entirely remove the overhead of memory operations during query processing. Our empirical study showed that performing a combination of these strategies can achieve 33\(\times \) to 113\(\times \) speedup over the unenhanced implementation.
Keywords
- Bitmap indices
- Big data
- Query processing
- GPU
This is a preview of subscription content, access via your institution.
Buying options








References
Andrzejewski, W., Wrembel, R.: GPU-WAH: applying GPUs to compressing bitmap indexes with word aligned hybrid. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.) DEXA 2010. LNCS, vol. 6262, pp. 315–329. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15251-1_26
Andrzejewski, W., Wrembel, R.: GPU-PLWAH: GPU-based implementation of the PLWAH algorithm for compressing bitmaps. Control Cybern. 40, 627–650 (2011)
Antoshenkov, G.: Byte-aligned bitmap compression. In: Proceedings DCC 1995 Data Compression Conference, p. 476. IEEE (1995)
Bonneville power administration. http://www.bpa.gov
Bradlow, E., Gangwar, M., Kopalle, P., Voleti, S.: The role of big data and predictive analytics in retailing. J. Retail. 93, 79–95 (2017)
Chambi, S., Lemire, D., Kaser, O., Godin, R.: Better bitmap performance with roaring bitmaps. Softw. Pract. Exp. 46(5), 709–719 (2016)
Colantonio, A., Di Pietro, R.: CONCISE: compressed ‘n’ composable integer set. Inf. Process. Lett. 110(16), 644–650 (2010)
Corrales, F., Chiu, D., Sawin, J.: Variable length compression for bitmap indices. In: Hameurlain, A., Liddle, S.W., Schewe, K.-D., Zhou, X. (eds.) DEXA 2011. LNCS, vol. 6861, pp. 381–395. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23091-2_32
Davenport, T., Dyche, J.: Big data in big companies. Technical report, International Institute for Analytics (2013)
Deliège, F., Pedersen, T.B.: Position list word aligned hybrid: optimizing space and performance for compressed bitmaps. In: International Conference on Extending Database Technology, EDBT 2010, pp. 228–239 (2010)
Erevelles, S., Fukawa, N., Swaynea, L.: Big data consumer analytics and the transformation of marketing. J. Bus. Res. 69, 897–904 (2016)
Fusco, F., Stoecklin, M.P., Vlachos, M.: NET-FLi: on-the-fly compression, archiving and indexing of streaming network traffic. VLDB 3(2), 1382–1393 (2010)
Guzun, G., Canahuate, G., Chiu, D., Sawin, J.: A tunable compression framework for bitmap indices. In: 2014 IEEE 30th International Conference on Data Engineering, pp. 484–495. IEEE (2014)
Hou, Q., Sun, X., Zhou, K., Lauterbach, C., Manocha, D.: Memory-scalable GPU spatial hierarchy construction. IEEE Trans. Vis. Comput. Graph. 17(4), 466–474 (2011)
Lichman, M.: UCI machine learning repository (2013). urlhttp://archive.ics.uci.edu/ml
Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theor. 28(2), 129–137 (1982)
Marr, B.: Starbucks: using big data, analytics and artificial intelligence to boost performance. Forbes, May 2018. https://www.forbes.com/sites/bernardmarr/2018/05/28/starbucks-using-big-data-analytics-and-artificial-intelligence-to-boost-performance/#5784902e65cd
McAfee, A., Brynjolfsson, E.: Big data: the management revolution. Harvard Bus. Rev. 90, 61–68 (2012)
Nelson, M., Sorenson, Z., Myre, J., Sawin, J., Chiu, D.: GPU acceleration of range queries over large data sets. In: Proceedings of the 6th IEEE/ACM International Conference on Big Data Computing, Application, and Technologies (BDCAT 2019), pp. 11–20 (2019)
Sariyar, M., Borg, A., Pommerening, K.: Controlling false match rates in record linkage using extreme value theory. J. Biomed. Inf. 44(4), 648–654 (2011)
Wang, L., et al.: SuperNeurons: dynamic GPU memory management for training deep neural networks. In: Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 41–53 (2018)
Wu, K., Otoo, E.J., Shoshani, A., Nordberg, H.: Notes on design and implementation of compressed bit vectors. Technical report, LBNL/PUB-3161, Lawrence Berkeley National Laboratory (2001)
Wu, K., Otoo, E.J., Shoshani, A.: Compressing bitmap indexes for faster search operations. In: Proceedings 14th International Conference on Scientific and Statistical Database Management, pp. 99–108. IEEE (2002)
Wu, K., Otoo, E.J., Shoshani, A.: Optimizing bitmap indices with efficient compression. ACM Trans. Database Syst. 31(1), 1–38 (2006)
You, S., Zhang, J., Gruenwald, L.: Parallel spatial query processing on GPUs using r-trees. In: Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, pp. 23–31 (2013)
Zaker, M., Phon-Amnuaisuk, S., Haw, S.C.: An adequate design for large data warehouse systems: bitmap index versus b-tree index. Int. J. Comput. Commun. 2, 39–46 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Tran, B., Schaffner, B., Sawin, J., Myre, J.M., Chiu, D. (2020). Increasing the Efficiency of GPU Bitmap Index Query Processing. In: Nah, Y., Cui, B., Lee, SW., Yu, J.X., Moon, YS., Whang, S.E. (eds) Database Systems for Advanced Applications. DASFAA 2020. Lecture Notes in Computer Science(), vol 12114. Springer, Cham. https://doi.org/10.1007/978-3-030-59419-0_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-59419-0_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59418-3
Online ISBN: 978-3-030-59419-0
eBook Packages: Computer ScienceComputer Science (R0)