HBOP code. https://github.com/sliang11/Hybrid-Bag-Of-Patterns
Bagnall, A., Lines, J., Hills, J., Bostrom, A.: Time-series classification with COTE: the collective of transformation-based ensembles. IEEE Trans. Knowl. Data Eng. 27(9), 2522–2535 (2015)
CrossRef
Google Scholar
Calbimonte, J., Yan, Z., Jeung, H., Corcho, Ó., Aberer, K.: Deriving semantic sensor metadata from raw measurements. In: SSN 2012, pp. 33–48 (2012)
Google Scholar
Dau, H.A., et al.: The UCR Time Series Archive. CoRR abs/1810.07758 (2018)
Google Scholar
Dau, H.A., et al.: Hexagon-ML: The UCR Time Series Classification Archive, October 2018. https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)
MathSciNet
MATH
Google Scholar
Grabocka, J., Schilling, N., Wistuba, M., Schmidt-Thieme, L.: Learning time-series shapelets. In: KDD 2014, pp. 392–401 (2014)
Google Scholar
Grabocka, J., Wistuba, M., Schmidt-Thieme, L.: Scalable classification of repetitive time series through frequencies of local polynomials. IEEE Trans. Knowl. Data Eng. 27(6), 1683–1695 (2015)
CrossRef
Google Scholar
Hills, J., Lines, J., Baranauskas, E., Mapp, J., Bagnall, A.: Classification of time series by shapelet transformation. Data Min. Knowl. Disc. 28(4), 851–881 (2014). https://doi.org/10.1007/s10618-013-0322-1
MathSciNet
CrossRef
MATH
Google Scholar
Jessica, L., Rohan, K., Yuan, L.: Rotation-invariant similarity in time series using bag-of-patterns representation. J. Intell. Inf. Syst. 39(2), 287–315 (2012)
CrossRef
Google Scholar
Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction for fast similarity search in large time series databases. Knowl. Inf. Syst. 3(3), 263–286 (2001)
CrossRef
Google Scholar
Li, X., Lin, J.: Linear time complexity time series classification with bag-of-pattern-features. In: ICDM 2017, pp. 277–286 (2017)
Google Scholar
Lin, J., Keogh, E., Li, W., Lonardi, S.: Experiencing SAX: a novel symbolic representation of time series. Data Min. Knowl. Disc. 15(2), 107 (2007). https://doi.org/10.1007/s10618-007-0064-z
MathSciNet
CrossRef
Google Scholar
Malinowski, S., Guyet, T., Quiniou, R., Tavenard, R.: 1d-SAX: a novel symbolic representation for time series. In: Tucker, A., Höppner, F., Siebes, A., Swift, S. (eds.) IDA 2013. LNCS, vol. 8207, pp. 273–284. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41398-8_24
CrossRef
Google Scholar
Mueen, A., Keogh, E., Young, N.: Logical-shapelets: an expressive primitive for time series classification. In: KDD 2011, pp. 1154–1162 (2011)
Google Scholar
Pelleg, D., Moore, A.: X-means: extending K-means with efficient estimation of the number of clusters. In: ICML 2000, pp. 727–734 (2000)
Google Scholar
Rakthanmanon, T., Keogh, E.: Fast shapelets: a scalable algorithm for discovering time series shapelets. In: SDM 2013, pp. 668–676 (2013)
Google Scholar
Schäfer, P.: The BOSS is concerned with time series classification in the presence of noise. Data Min. Knowl. Disc. 29(6), 1505–1530 (2015). https://doi.org/10.1007/s10618-014-0377-7
MathSciNet
CrossRef
MATH
Google Scholar
Schäfer, P.: Scalable time series classification. Data Min. Knowl. Disc. 30(5), 1273–1298 (2016). https://doi.org/10.1007/s10618-015-0441-y
MathSciNet
CrossRef
MATH
Google Scholar
Schäfer, P., Högqvist, M.: SFA: a symbolic fourier approximation and index for similarity search in high dimensional datasets. In: EDBT 2012, pp. 516–527 (2012)
Google Scholar
Schäfer, P., Leser, U.: Fast and accurate time series classification with WEASEL. In: CIKM 2017, pp. 637–646 (2017)
Google Scholar
Senin, P., Malinchik, S.: SAX-VSM: interpretable time series classification using SAX and vector space model. In: ICDM 2013, pp. 1175–1180 (2013)
Google Scholar
Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.: Experimental comparison of representation methods and distance measures for time series data. Data Min. Knowl. Disc. 26(2), 275–309 (2013). https://doi.org/10.1007/s10618-012-0250-5
MathSciNet
CrossRef
Google Scholar
Ye, L., Keogh, E.: Time series shapelets: a novel technique that allows accurate, interpretable and fast classification. Data Min. Knowl. Disc. 22(1–2), 149–182 (2011). https://doi.org/10.1007/s10618-010-0179-5
MathSciNet
CrossRef
MATH
Google Scholar
Yuan, J., Lin, Q., Zhang, W., Wang, Z.: Locally slope-based dynamic time warping for time series classification. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM 2019, pp. 1713–1722 (2019)
Google Scholar
Zhao, J., Itti, L.: shapeDTW: shape dynamic time warping. Pattern Recogn. 74, 171–184 (2018)
CrossRef
Google Scholar