Skip to main content

Energy Related Applications

  • Chapter
  • First Online:
MXenes and MXenes-based Composites

Abstract

The applications of MXenes and their composites or hybrids in energy storage and conversion are overviewed. In energy storage devices, MXenes are mainly used as the electrodes, due to their multi-layered structure, high electrical conductivity, strong mechanical flexibility and high specific surface area. Furthermore, they can be readily combined with various other active materials, thus leading to electrodes with enhanced electrochemical performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anasori, B., Lukatskaya, M.R., Gogotsi, Y.: 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017)

    Article  CAS  Google Scholar 

  2. Chaudhari, N.K., Jin, H., Kim, B.Y., Baek, D.S., Joo, S.H., Lee, K.Y.: MXene: an emerging two-dimensional material for future energy conversion and storage applications. J. Mater. Chem. A 5, 24564–24579 (2017)

    Article  CAS  Google Scholar 

  3. Okubo, M., Sugahara, A., Kajiyama, S., Yamada, A.: MXene as a charge storage host. Acc. Chem. Res. 51, 591–599 (2018)

    Article  CAS  Google Scholar 

  4. Sun, S.J., Liao, C., Hafez, A.M., Zhu, H.L., Wu, S.P.: Two-dimensional MXenes for energy storage. Chem. Eng. J. 338, 27–45 (2018)

    Article  CAS  Google Scholar 

  5. Sun, Y.J., Chen, D.S., Liang, Z.Q.: Two-dimensional MXenes for energy storage and conversion applications. Mater. Today Energy 5, 22–36 (2017)

    Article  Google Scholar 

  6. Tang, H., Hu, Q., Zheng, M.B., Chi, Y., Qin, X.Y., Pang, H., et al.: MXene-2D layered electrode materials for energy storage. Progr. Nat. Sci. Mater. Int. 28, 133–147 (2018)

    Article  CAS  Google Scholar 

  7. Xiong, D.B., Li, X.F., Bai, Z.M., Lu, S.G.: Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 14, 1703419 (2018)

    Article  CAS  Google Scholar 

  8. Yoon, Y.H., Lee, K.S., Lee, H.Y.: Low-dimensional carbon and MXene-based electrochemical capacitor electrodes. Nanotechnology 27, 172001 (2016)

    Article  CAS  Google Scholar 

  9. Zhang, X., Zhang, Z.H., Zhou, Z.: MXene-based materials for electrochemical energy storage. J. Energy Chem. 27, 73–85 (2018)

    Article  Google Scholar 

  10. Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J.J., Heon, M., et al.: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011)

    Article  CAS  Google Scholar 

  11. Tang, Q., Zhou, Z., Shen, P.W.: Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc. 134, 16909–16916 (2012)

    Article  CAS  Google Scholar 

  12. Er, D.Q., Li, J.W., Naguib, M., Gogotsi, Y., Shenoy, V.B.: Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl. Mater. Interfaces 6, 11173–11179 (2014)

    Article  CAS  Google Scholar 

  13. Ren, C.E., Hatzell, K.B., Alhabeb, M., Ling, Z., Mahmoud, K.A., Gogotsi, Y.: Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. J. Phys. Chem. Lett. 6, 4026–4031 (2015)

    Article  CAS  Google Scholar 

  14. Xie, Y., Naguib, M., Mochalin, V.N., Barsoum, M.W., Gogotsi, Y., Yu, X.Q., et al.: Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc. 136, 6385–6394 (2014)

    Article  CAS  Google Scholar 

  15. Xu, K., Ji, X., Zhang, B., Chen, C., Ruan, Y.J., Miao, L., et al.: Charging/discharging dynamics in two-dimensional titanium carbide (MXene) slit nanopore: Insights from molecular dynamic study. Electrochim. Acta 196, 75–83 (2016)

    Article  CAS  Google Scholar 

  16. Ashton, M., Hennig, R.G., Sinnott, S.B.: Computational characterization of lightweight multilayer MXene Li-ion battery anodes. Appl. Phys. Lett. 108, 023901 (2016)

    Article  CAS  Google Scholar 

  17. Sun, D.D., Hu, Q.K., Chen, J.F., Zhang, X.Y., Wang, L.B., Wu, Q.H., et al.: Structural transformation of MXene (V2C, Cr2C, and Ta2C) with O groups during lithiation: a first-principles investigation. ACS Appl. Mater. Interfaces 8, 74–81 (2016)

    Article  CAS  Google Scholar 

  18. Pan, H.: Electronic properties and lithium storage capacities of two-dimensional transition-metal nitride monolayers. J. Mater. Chem. A 3, 21486–21493 (2015)

    Article  CAS  Google Scholar 

  19. Chen, X.Z., Kong, Z.Z., Li, N., Zhao, X.J., Sun, C.H.: Proposing the prospects of Ti3CN transition metal carbides (MXenes) as anodes of Li-ion batteries: a DFT study. Phys. Chem. Chem. Phys. 18, 32937–32943 (2016)

    Article  CAS  Google Scholar 

  20. Du, Y.T., Kan, X., Yang, F., Gan, L.Y., Schwingenschlogl, U.: MXene/graphene heterostructures as high-performance electrodes for Li-ion batteries. ACS Appl. Mater. Interfaces 10, 32867–32873 (2018)

    Article  CAS  Google Scholar 

  21. Yang, E.J., Ji, H.J., Kim, J.H., Kim, H.J., Jung, Y.S.: Exploring the possibilities of two-dimensional transition metal carbides as anode materials for sodium batteries. Phys. Chem. Chem. Phys. 17, 5000–5005 (2015)

    Article  CAS  Google Scholar 

  22. Mashtalir, O., Naguib, M., Mochalin, V.N., Dall’Agnese, Y., Heon, M., Barsoum, M.W., et al.: Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4:1716 (2013)

    Google Scholar 

  23. Sun, D.D., Wang, M.S., Li, Z.Y., Fan, G.X., Fan, L.Z., Zhou, A.G.: Two-dimensional Ti3C2 as anode material for Li-ion batteries. Electrochem. Commun. 47, 80–83 (2014)

    Article  CAS  Google Scholar 

  24. Kim, S.J., Naguib, M., Zhao, M.Q., Zhang, C.F., Jung, H.T., Barsoum, M.W., et al.: High mass loading, binder-free MXene anodes for high areal capacity Li-ion batteries. Electrochim. Acta 163, 246–251 (2015)

    Article  CAS  Google Scholar 

  25. Lin, Z.Y., Sun, D.F., Huang, Q., Yang, J., Barsoum, M.W., Yan, X.B.: Carbon nanofiber bridged two-dimensional titanium carbide as a superior anode for lithium-ion batteries. J. Mater. Chem. A 3, 14096–14100 (2015)

    Article  CAS  Google Scholar 

  26. Ren, C.E., Zhao, M.Q., Makaryan, T., Halim, J., Boota, M., Kota, S., et al.: Porous two-dimensional transition metal carbide (MXene) flakes for high-performance Li-ion storage. ChemElectroChem 3, 689–693 (2016)

    Article  CAS  Google Scholar 

  27. Byeon, A.Y., Zhao, M.Q., Ren, C.E., Halim, J., Kota, S., Urbankowski, P., et al.: Two-dimensional titanium carbide MXene as a cathode material for hybrid magnesium/lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 4296–4300 (2017)

    Article  CAS  Google Scholar 

  28. Luo, J.M., Tao, X.Y., Zhang, J., Xia, Y., Huang, H., Zhang, L.Y., et al.: Sn4+ ion decorated highly conductive Ti3C2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 10, 2491–2499 (2016)

    Article  CAS  Google Scholar 

  29. Simon, P.: Two-dimensional MXene with controlled interlayer spacing for electrochemical energy storage. ACS Nano 11, 2393–2396 (2017)

    Article  CAS  Google Scholar 

  30. Zou, G.D., Zhang, Z.W., Guo, J.X., Liu, B.Z., Zhang, Q.R., Fernandez, C., et al.: Synthesis of MXene/Ag composites for extraordinary long cycle lifetime lithium storage at high rates. ACS Appl. Mater. Interfaces 8, 22280–22286 (2016)

    Article  CAS  Google Scholar 

  31. Wang, F., Wang, Z.J., Zhu, J.F., Yang, H.B., Chen, X.J., Wang, L., et al.: Facile synthesis SnO2 nanoparticle-modified Ti3C2 MXene nanocomposites for enhanced lithium storage application. J. Mater. Sci. 52, 3556–3565 (2017)

    Article  CAS  Google Scholar 

  32. Ahmed, B., Anjum, D.H., Gogotsi, Y., Alshareef, H.N.: Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes. Nano Energy 34, 249–256 (2017)

    Article  CAS  Google Scholar 

  33. Wu, X.H., Wang, Z.Y., Yu, M.Z., Xiu, L.Y., Qiu, J.S.: Stabilizing the MXenes by carbon nanoplating for eeveloping hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv. Mater. 29, 1607017 (2017)

    Article  CAS  Google Scholar 

  34. Naguib, M., Come, J., Dyatkin, B., Presser, V., Taberna, P.L., Simon, P., et al.: MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem. Commun. 16, 61–64 (2012)

    Article  CAS  Google Scholar 

  35. Ahmed, B., Anjum, D.H., Hedhili, M.N., Gogotsi, Y., Alshareef, H.N.: H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes. Nanoscale 8, 7580–7587 (2016)

    Article  CAS  Google Scholar 

  36. Liu, F.F., Zhou, J., Wang, S.W., Wang, B.X., Shen, C., Wang, L.B., et al.: Preparation of high-purity V2C MXene and electrochemical properties as Li-ion batteries. J. Electrochem. Soc. 164, A709–A713 (2017)

    Article  CAS  Google Scholar 

  37. Zhou, J., Gao, S.H., Guo, Z.L., Sun, Z.M.: Ti-enhanced exfoliation of V2AlC into V2C MXene for lithium-ion battery anodes. Ceram. Int. 43, 11450–11454 (2017)

    Article  CAS  Google Scholar 

  38. Mashtalir, O., Lukatskaya, M.R., Zhao, M.Q., Barsoum, M.W., Gogotsi, Y.: Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Adv. Mater. 27, 3501–3506 (2015)

    Article  CAS  Google Scholar 

  39. Zhou, J., Zha, X.H., Zhou, X.B., Chen, F.Y., Gao, G.L., Wang, S.W., et al.: Synthesis and electrochemical properties of two-dimensional hafnium carbide. ACS Nano 11, 3841–3850 (2017)

    Article  CAS  Google Scholar 

  40. Zhao, S.S., Meng, X., Zhu, K., Du, F., Chen, G., Wei, Y.J., et al.: Li-ion uptake and increase in interlayer spacing of Nb4C3 MXene. Energy Storage Mater. 8, 42–48 (2017)

    Article  Google Scholar 

  41. Ali, A., Hantanasirisakul, K., Abdala, A., Urbankowski, P., Zhao, M.Q., Anasori, B., et al.: Effect of synthesis on performance of MXene/iron oxide anode material for lithium-ion batteries. Langmuir 34, 11325–11334 (2018)

    Article  CAS  Google Scholar 

  42. Kumar, R., Liu, J., Hwang, J.Y., Sun, Y.K.: Recent research trends in Li-S batteries. J. Mater. Chem. A 6, 11582–11605 (2018)

    Article  CAS  Google Scholar 

  43. Liu, J., Zhang, Q., Sun, Y.K.: Recent progress of advanced binders for Li-S batteries. J. Power Sources 396, 19–32 (2018)

    Article  CAS  Google Scholar 

  44. Liu, Y.J., He, P., Zhou, H.S.: Rechargeable solid-state Li-air and Li-S batteries: materials, construction, and challenges. Adv. Energy Mater. 8, 1701602 (2018)

    Article  CAS  Google Scholar 

  45. Zhang, J., Huang, H., Bae, J.W., Chung, S.H., Zhang, W.K., Manthiram, A., et al.: Nanostructured host materials for trapping sulfur in rechargeable Li-S batteries: structure design and interfacial chemistry. Small Methods 2 (2018)

    Google Scholar 

  46. Zheng, D., Wang, G.W., Liu, D., Si, J.Y., Ding, T.Y., Qu, D.Y., et al.: The progress of Li-S batteries-understanding of the sulfur redox mechanism: dissolved polysulfide ions in the electrolytes. Adv. Mater. Technol. 3, 1700233 (2018)

    Article  CAS  Google Scholar 

  47. Zhao, Y.M., Zhao, J.X.: Functional group-dependent anchoring effect of titanium carbide-based MXenes for lithium-sulfur batteries: a computational study. Appl. Surf. Sci. 412, 591–598 (2017)

    Article  CAS  Google Scholar 

  48. Rao, D.W., Zhang, L.Y., Wang, Y.H., Meng, Z.S., Qian, X.Y., Liu, J.H., et al.: Mechanism on the improved performance of lithium sulfur batteries with MXene-based additives. J. Phys. Chem. C 121, 11047–11054 (2017)

    Article  CAS  Google Scholar 

  49. Song, J.J., Su, D.W., Xie, X.Q., Guo, X., Bao, W.Z., Shao, G.J., et al.: Immobilizing polysulfides with MXene-functionalized separators for stable lithium-sulfur batteries. ACS Appl. Mater. Interfaces 8, 29427–29433 (2016)

    Article  CAS  Google Scholar 

  50. Liang, X., Garsuch, A., Nazar, L.F.: Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium–sulfur batteries. Angew. Chem. Int. Ed. 54, 3907–3911 (2015)

    Article  CAS  Google Scholar 

  51. Liang, X., Rangom, Y., Kwok, C.Y., Pang, Q., Nazar, L.F.: Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Adv. Mater. 29, 1603040 (2017)

    Article  CAS  Google Scholar 

  52. Bao, W.Z., Xie, X.Q., Xu, J., Guo, X., Song, J.J., Wu, W.J., et al.: Confined sulfur in 3D MXene/reduced graphene oxide hybrid nanosheets for lithium-sulfur battery. Chem. A Eur. J. 23, 12613–12619 (2017)

    Article  CAS  Google Scholar 

  53. Dong, Y.F., Zheng, S.H., Qin, J.Q., Zhao, X.J., Shi, H.D., Wang, X.H., et al.: All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries. ACS Nano 12, 2381–2388 (2018)

    Article  CAS  Google Scholar 

  54. Kajiyama, S., Szabova, L., Sodeyama, K., Iinuma, H., Morita, R., Gotoh, K., et al.: Sodium-ion intercalation mechanism in MXene nanosheets. ACS Nano 10, 3334–3341 (2016)

    Article  CAS  Google Scholar 

  55. Bak, S.M., Qiao, R.M., Yang, W.L., Lee, S.S., Yu, X.Q., Anasori, B., et al.: Na-ion intercalation and charge storage mechanism in 2D vanadium carbide. Adv. Energy Mater. 7, 1700959 (2017)

    Article  CAS  Google Scholar 

  56. Zhao, M.Q., Xie, X.Q., Ren, C.E., Makaryan, T., Anasori, B., Wang, G.X., et al.: Hollow mXene spheres and 3D macroporous mXene frameworks for Na-ion storage. Adv. Mater. 29, 1702410 (2017)

    Article  CAS  Google Scholar 

  57. Chen, Z.P., Ren, W.C., Gao, L.B., Liu, B.L., Pei, S.F., Cheng, H.M.: Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10, 424–428 (2011)

    Article  CAS  Google Scholar 

  58. Wu, Y.T., Nie, P., Jiang, J.M., Ding, B., Dou, H., Zhang, X.G.: MoS2-nanosheet-decorated 2D titanium carbide (MXene) as high-performance anodes for sodium-ion batteries. ChemElectroChem 4, 1560–1565 (2017)

    Article  CAS  Google Scholar 

  59. Guo, X., Xie, X.Q., Choi, S.H., Zhao, Y.F., Liu, H., Wang, C.Y., et al.: Sb2O3/MXene (Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries. J. Mater. Chem. A 5, 12445–12452 (2017)

    Article  CAS  Google Scholar 

  60. Dong, Y.F., Wu, Z.S., Zheng, S.H., Wang, X.H., Qin, J.Q., Wang, S., et al.: Ti3C2 MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities. ACS Nano 11, 4792–4800 (2017)

    Article  CAS  Google Scholar 

  61. Tao, M.L., Zhang, Y.Q., Zhan, R.M., Guo, B.S., Xu, Q.J., Xu, M.W.: A chemically bonded CoNiO2 nanoparticles/MXene composite as anode for sodium-ion batteries. Mater. Lett. 230, 173–176 (2018)

    Article  CAS  Google Scholar 

  62. Zhang, Y.Q., Zhan, R.M., Xu, Q.J., Liu, H., Tao, M.L., Luo, Y.S., et al.: Circuit board-like CoS/MXene composite with superior performance for sodium storage. Chem. Eng. J. 357, 220–225 (2019)

    Article  CAS  Google Scholar 

  63. Peng, S.J., Han, X.P., Li, L.L., Zhu, Z.Q., Cheng, F.Y., Srinivansan, M.U., et al.: Unique cobalt sulfide/reduced graphene oxide composite as an anode for sodium-ion batteries with superior rate capability and long cycling stability. Small 12, 1359–1368 (2016)

    Article  CAS  Google Scholar 

  64. Han, F., Zhang, C.Z., Sun, B., Tang, W., Yang, J.X., Li, X.K.: Dual-carbon phase-protective cobalt sulfide nanoparticles with cable-type and mesoporous nanostructure for enhanced cycling stability in sodium and lithium ion batteries. Carbon 118, 731–742 (2017)

    Article  CAS  Google Scholar 

  65. Naguib, M., Adams, R.A., Zhao, Y.P., Zemlyanov, D., Varma, A., Nanda, J., et al.: Electrochemical performance of MXenes as K-ion battery anodes. Chem. Commun. 53, 6883–6886 (2017)

    Article  CAS  Google Scholar 

  66. Mathis, T.S., Kurra, N., Wang, X.H., Pinto, D., Simon, P., Gogotsi, Y.: Energy storage data reporting in perspective-guidelines for interpreting the performance of electrochemical energy storage systems. Adv. Energy Mater. 9, 1902007 (2019)

    Article  CAS  Google Scholar 

  67. Lukatskaya, M.R., Mashtalir, O., Ren, C.E., Dall’Agnese, Y., Rozier, P., Taberna, P.L., et al.: Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341:1502–1505 (2013)

    Google Scholar 

  68. Lukatskaya, M.R., Bak, S.M., Yu, X.Q., Yang, X.Q., Barsoum, M.W., Gogotsi, Y.: Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv. Energy Mater. 5, 1500589 (2015)

    Article  CAS  Google Scholar 

  69. Hu, M.M., Li, Z.J., Hu, T., Zhu, S.H., Zhang, C., Wang, X.H.: High-capacitance mechanism for Ti3C2TX MXene by in situ electrochemical Raman spectroscopy investigation. ACS Nano 10, 11344–11350 (2016)

    Article  CAS  Google Scholar 

  70. Ghidiu, M., Lukatskaya, M.R., Zhao, M.Q., Gogotsi, Y., Barsoum, M.W.: Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014)

    Article  CAS  Google Scholar 

  71. Xu, S.K., Wei, G.D., Li, J.Z., Ji, Y., Klyui, N., Izotov, V., et al.: Binder-free Ti3C2Tx MXene electrode film for supercapacitor produced by electrophoretic deposition method. Chem. Eng. J. 317, 1026–1036 (2017)

    Article  CAS  Google Scholar 

  72. Wang, X.Y., Fu, Q.S., Wen, J., Ma, X.Z., Zhu, C.C., Zhang, X.T., et al.: 3D Ti3C2Tx aerogels with enhanced surface area for high performance supercapacitors. Nanoscale 10, 20828–20835 (2018)

    Article  CAS  Google Scholar 

  73. Hu, M.M., Hu, T., Cheng, R.F., Yang, J.X., Cui, C., Zhang, C., et al.: MXene-coated silk-derive d carbon cloth toward flexible electrode for supercapacitor application. J. Energy Chem. 27, 161–166 (2018)

    Article  Google Scholar 

  74. Zhang, C.F., Anasori, B., Seral-Ascaso, A., Park, S.H., McEvoy, N., Shmeliov, A., et al.: Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29, 1702678 (2017)

    Article  CAS  Google Scholar 

  75. Lukatskaya, M.R., Kota, S., Lin, Z.F., Zhao, M.Q., Shpigel, N., Levi, M.D., et al.: Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017)

    Article  CAS  Google Scholar 

  76. Dall’Agnese, Y., Lukatskaya, M.R., Cook, K.M., Taberna, P.L., Gogotsi, Y., Simon, P.: High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochem. Commun. 48, 118–122 (2014)

    Article  CAS  Google Scholar 

  77. Li, J., Yuan, X.T., Lin, C., Yang, Y.Q., Xu, L., Du, X., et al.: Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv. Energy Mater. 7, 1602725 (2017)

    Article  CAS  Google Scholar 

  78. Mashtalir, O., Lukatskaya, M.R., Kolesnikov, A.I., Raymundo-Pinero, E., Naguib, M., Barsoum, M.W., et al.: The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene). Nanoscale 8, 9128–9133 (2016)

    Article  CAS  Google Scholar 

  79. Fu, Q.S., Wen, J., Zhang, N., Wu, L.L., Zhang, M.Y., Lin, S.Y., et al.: Free-standing Ti3C2Tx electrode with ultrahigh volumetric capacitance. RSC Adv. 7, 11998–12005 (2017)

    Article  CAS  Google Scholar 

  80. Ghidiu, M., Kota, S., Halim, J., Sherwood, A.W., Nedfors, N., Rosen, J., et al.: Alkylammonium cation intercalation into Ti3C2 (MXene): effects on properties and ion-exchange capacity estimation. Chem. Mater. 29, 1099–1106 (2017)

    Article  CAS  Google Scholar 

  81. Wen, Y.Y., Rufford, T.E., Chen, X.Z., Li, N., Lyu, M.Q., Dai, L.M., et al.: Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy. 38, 368–376 (2017)

    Article  CAS  Google Scholar 

  82. Yang, C.H., Que, W.X., Yin, X.T., Tian, Y.P., Yang, Y.W., Que, M.D.: Improved capacitance of nitrogen-doped delaminated two-dimensional titanium carbide by urea-assisted synthesis. Electrochim. Acta 225, 416–424 (2017)

    Article  CAS  Google Scholar 

  83. Tang, Y., Zhu, J.F., Yang, C.H., Wang, F.: Enhanced capacitive performance based on diverse layered structure of two-dimensional Ti3C2 MXene with long etching time. J. Electrochem. Soc. 163, A1975–A1982 (2016)

    Article  CAS  Google Scholar 

  84. Come, J., Xie, Y., Naguib, M., Jesse, S., Kalinin, S.V., Gogotsi, Y., et al.: Nanoscale elastic changes in 2D Ti3C2Tx (MXene) pseudocapacitive electrodes. Adv. Energy Mater. 6, 1502290 (2016)

    Article  CAS  Google Scholar 

  85. Shpigel, N., Lukatskaya, M.R., Sigalov, S., Ren, C.E., Nayak, P., Levi, M.D., et al.: In situ monitoring of Gravimetric and viscoelastic changes in 2D intercalation electrodes. ACS Energy Lett. 2, 1407–1415 (2017)

    Article  CAS  Google Scholar 

  86. Ling, Z., Ren, C.E., Zhao, M.Q., Yang, J., Giammarco, J.M., Qiu, J.S., et al.: Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. 111, 16676–16681 (2014)

    Article  CAS  Google Scholar 

  87. Boota, M., Anasori, B., Voigt, C., Zhao, M.Q., Barsoum, M.W., Gogotsi, Y.: Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv. Mater. 28, 1517–1522 (2016)

    Article  CAS  Google Scholar 

  88. Zhu, M.S., Huang, Y., Deng, Q.H., Zhou, J., Pei, Z.X., Xue, Q., et al.: Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Adv. Energy Mater. 6, 1600969 (2016)

    Article  CAS  Google Scholar 

  89. Boota, M., Pasini, M., Galeotti, F., Porzio, W., Zhao, M.Q., Halim, J., et al.: Interaction of polar and nonpolar polyfluorenes with layers of two-dimensional titanium carbide (MXene): Intercalation and pseudocapacitance. Chem. Mater. 29, 2731–2738 (2017)

    Article  CAS  Google Scholar 

  90. Ren, Y.Y., Zhu, J.F., Wang, L., Liu, H., Liu, Y., Wu, W.L., et al.: Synthesis of polyaniline nanoparticles deposited on two-dimensional titanium carbide for high-performance supercapacitors. Mater. Lett. 214, 84–87 (2018)

    Article  CAS  Google Scholar 

  91. Lu, X., Zhu, J.F., Wu, W.L., Zhang, B.: Hierarchical architecture of PANI@TiO2/Ti3C2Tx ternary composite electrode for enhanced electrochemical performance. Electrochim. Acta 228, 282–289 (2017)

    Article  CAS  Google Scholar 

  92. Solis, M.A.C., Wu, Z.P., Liu, C.G.: Microstrip-Strip Feed Transparent Ceramic Rectangular Dielectric Resonator Antenna. IEEE, New York (2013)

    Google Scholar 

  93. Tian, Y.P., Yang, C.H., Que, W.X., He, Y.C., Liu, X.B., Luo, Y.Y., et al.: Ni foam supported quasi-core-shell structure of ultrathin Ti3C2 nanosheets through electrostatic layer-by-layer self-assembly as high rate-performance electrodes of supercapacitors. J. Power Sources 369, 78–86 (2017)

    Article  CAS  Google Scholar 

  94. Zhao, M.Q., Ren, C.E., Ling, Z., Lukatskaya, M.R., Zhang, C.F., Van Aken, K.L., et al.: Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 27, 339–345 (2015)

    Article  CAS  Google Scholar 

  95. Zhou, Z.H., Panatdasirisuk, W., Mathis, T.S., Anasori, B., Lu, C.H., Zhang, X.X., et al.: Layer-by-layer assembly of MXene and carbon nanotubes on electrospun polymer films for flexible energy storage. Nanoscale 10, 6005–6013 (2018)

    Article  CAS  Google Scholar 

  96. Zang, X.N., Shen, C.W., Kao, E., Warren, R., Zhang, R.P., Teh, K.S., et al.: Titanium disulfide coated carbon nanotube hybrid electrodes enable high energy density symmetric pseudocapacitors. Adv. Mater. 30, 1704754 (2018)

    Article  CAS  Google Scholar 

  97. Yan, P.T., Zhang, R.J., Jia, J., Wu, C., Zhou, A.G., Xu, J., et al.: Enhanced supercapacitive performance of delaminated two-dimensional titanium carbide/carbon nanotube composites in alkaline electrolyte. J. Power Sources 284, 38–43 (2015)

    Article  CAS  Google Scholar 

  98. Dall’Agnese, Y., Rozier, P., Taberna, P.L., Gogotsi, Y., Simon, P.: Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes. J. Power Sources 306:510–515 (2016)

    Google Scholar 

  99. Wang, Z.Y., Qin, S., Seyedin, S., Zhang, J.Z., Wang, J.T., Levitt, A., et al.: High-performance biscrolled MXene/carbon nanotube yarn supercapacitors. Small 14, 1802225 (2018)

    Article  CAS  Google Scholar 

  100. Yan, J., Ren, C.E., Maleski, K., Hatter, C.B., Anasori, B., Urbankowski, P., et al.: Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Func. Mater. 27, 1701264 (2017)

    Article  CAS  Google Scholar 

  101. Couly, C., Alhabeb, M., Van Aken, K.L., Kurra, N., Gomes, L., Navarro-Suarez, A.M., et al.: Asymmetric flexible MXene-reduced fraphene oxide micro-supercapacitor. Adv. Electron. Mater. 4, 1700339 (2018)

    Article  CAS  Google Scholar 

  102. Fan, Z.M., Wang, Y.S., Xie, Z.M., Wang, D.L., Yuan, Y., Kang, H.J., et al.: Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv. Sci. 5, 1800750 (2018)

    Article  CAS  Google Scholar 

  103. Fu, J.J., Yun, J.M., Wu, S.X., Li, L., Yu, L.T., Kim, K.H.: Architecturally robust graphene-encapsulated MXene Ti2CTx@polyaniline composite for high-performance pouch-type asymmetric supercapacitor. ACS Appl. Mater. Interfaces 10, 34212–34221 (2018)

    Article  CAS  Google Scholar 

  104. Wang, Y., Dou, H., Wang, J., Ding, B., Xu, Y.L., Chang, Z., et al.: Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors. J. Power Sources 327, 221–228 (2016)

    Article  CAS  Google Scholar 

  105. Li, H., Musharavati, F., Zalenezhad, E., Chen, X., Hui, K.N., Hui, K.S.: Electrodeposited Ni-Co layered double hydroxides on titanium carbide as a binder-free electrode for supercapacitors. Electrochim. Acta 261, 178–187 (2018)

    Article  CAS  Google Scholar 

  106. Zhang, X.F., Liu, Y., Dong, S.L., Ye, Z.Y., Wei, Y.D.: Low-temperature synthesized nanocomposites with amorphous FeOOH on Ti3C2Tx for supercapacitors. J. Alloy. Compd. 744, 507–515 (2018)

    Article  CAS  Google Scholar 

  107. Zhu, J.F., Tang, Y., Yang, C.H., Wang, F., Cao, M.J.: Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance. J. Electrochem. Soc. 163, A785–A791 (2016)

    Article  CAS  Google Scholar 

  108. Tian, Y.P., Yang, C.H., Que, W.X., Liu, X.B., Yin, X.T., Kong, L.B.: Flexible and free-standing 2D titanium carbide film decorated with manganese oxide nanoparticles as a high volumetric capacity electrode for supercapacitor. J. Power Sources 359, 332–339 (2017)

    Article  CAS  Google Scholar 

  109. Jiang, H.M., Wang, Z.G., Yang, Q., Hanif, M., Wang, Z.M., Dong, L.C., et al.: A novel MnO2/Ti3C2Tx MXene nanocomposite as high performance electrode materials for flexible supercapacitors. Electrochim. Acta 290, 695–703 (2018)

    Article  CAS  Google Scholar 

  110. Yuan, W.Y., Cheng, L.F., Zhang, B.X., Wu, H.: 2D-Ti3C2 as hard, conductive substrates to enhance the electrochemical performance of MnO2 for supercapacitor applications. Ceram. Int. 44, 17539–17543 (2018)

    Article  CAS  Google Scholar 

  111. Zou, R., Quan, H.Y., Pan, M.H., Zhou, S., Chen, D.Z., Luo, X.B.: Self-assembled MXene (Ti3C2Tx)/α-Fe2O3 nanocomposite as negative electrode material for supercapacitors. Electrochim. Acta 292, 31–38 (2018)

    Article  CAS  Google Scholar 

  112. Xia, Q.X., Fu, J.J., Yun, J.M., Mane, R.S., Kim, K.H.: High volumetric energy density annealed-MXene-nickel oxide/MXene asymmetric supercapacitor. RSC Adv. 7, 11000–11011 (2017)

    Article  CAS  Google Scholar 

  113. Rakhi, R.B., Ahmed, B., Hedhili, M.N., Anjum, D.H., Alshareef, H.N.: Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem. Mater. 27, 5314–5323 (2015)

    Article  CAS  Google Scholar 

  114. Krishnamoorthy, K., Pazhamalai, P., Sahoo, S., Kim, S.J.: Titanium carbide sheet based high performance wire type solid state supercapacitors. J. Mater. Chem. A 5, 5726–5736 (2017)

    Article  CAS  Google Scholar 

  115. Zhang, X.F., Liu, Y.F., Dong, S.L., Yang, J.Q., Liu, X.D.: Surface modified MXene film as flexible electrode with ultrahigh volumetric capacitance. Electrochim. Acta 294, 233–239 (2019)

    Article  CAS  Google Scholar 

  116. Li, L., Zhang, N., Zhang, M.Y., Wu, L., Zhang, X.T., Zhang, Z.G.: Ag-nanoparticle-decorated 2D titanium carbide (MXene) with superior electrochemical performance for supercapacitors. ACS Sustain. Chem. Eng. 6, 7442–7450 (2018)

    Article  CAS  Google Scholar 

  117. Lin, Z.F., Barbara, D., Taberna, P.L., Van Aken, K.L., Anasori, B., Gogotsi, Y., et al.: Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte. J. Power Sources 326, 575–579 (2016)

    Article  CAS  Google Scholar 

  118. Wang, X., Mathis, T.S., Li, K., Lin, Z., Vlcek, L., Torita, T., et al.: Influences from solvents on charge storage in titanium carbide MXenes. Nat. Energy 4, 241–248 (2019)

    Article  CAS  Google Scholar 

  119. Li, Y.B., Shao, H.F., Lin, Z., Lu, J., Liu, L.Y., Duployer, B., et al.: A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. (2020). https://doi.org/10.1038/s41563-020-0657-0

  120. Li, P., Shi, W.H., Liu, W.X., Chen, Y.F., Xu, X.L., Ye, S.F., et al.: Fabrication of high-performance MXene-based all-solid-state flexible microsupercapacitor based on a facile scratch method. Nanotechnology 29, 445401 (2018)

    Article  CAS  Google Scholar 

  121. Yue, Y., Liu, N., Ma, Y.A., Wang, S.L., Liu, W.J., Luo, C., et al.: Highly self-healable 3D microsupercapacitor with MXene-graphene composite aerogel. ACS Nano 12, 4224–4232 (2018)

    Article  CAS  Google Scholar 

  122. Couly, C., Alhabeb, M., Van Aken, K.L., Kurra, N., Gomes, L., Navarro-Suarez, A.M., et al.: Asymmetric flexible MXene-reduced graphene oxide micro-supercapacitor. Adv. Electron. Mater. 4, 1700339 (2018)

    Article  CAS  Google Scholar 

  123. Chen, X., Wang, S.L., Shi, J.J., Du, X.Y., Cheng, Q.H., Xue, R., et al.: Direct laser etching free-standing MXene-MoS2 film for highly flexible micro-supercapacitor. Adv. Mater. Interfaces 6, 1901160 (2019)

    Article  CAS  Google Scholar 

  124. Wu, C.W., Unnikrishnan, B., Chen, I.W.P., Harroun, S.G., Chang, H.T., Huang, C.C.: Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application. Energy Storage Mater. 25, 563–571 (2020)

    Article  Google Scholar 

  125. Guo, Z.L., Zhou, J., Zhu, L.G., Sun, Z.M.: MXene: a promising photocatalyst for water splitting. J. Mater. Chem. A 4, 11446–11452 (2016)

    Article  CAS  Google Scholar 

  126. Seh, Z.W., Fredrickson, K.D., Anasori, B., Kibsgaard, J., Strickler, A.L., Lukatskaya, M.R., et al.: Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 1, 589–594 (2016)

    Article  CAS  Google Scholar 

  127. Huang, B., Zhou, N.G., Chen, X.Z., Ong, W.J., Li, N.: Insights into the electrocatalytic hydrogen evolution reaction mechanism on two-dimensional transition-metal carbonitrides (MXene). Chem. A Eur. J. 24, 18479–18486 (2018)

    Article  CAS  Google Scholar 

  128. Xiu, L.Y., Wang, Z.Y., Yu, M.Z., Wu, X.H., Qiu, J.S.: Aggregation-resistant 3D MXene-based architecture as efficient bifunctional electrocatalyst for overall water splitting. ACS Nano 12, 8017–8028 (2018)

    Article  CAS  Google Scholar 

  129. Wang, H., Peng, R., Hood, Z.D., Naguib, M., Adhikari, S.P., Wu, Z.L.: Titania composites with 2D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation. ChemSusChem 9, 1490–1497 (2016)

    Article  CAS  Google Scholar 

  130. Li, Y.J., Deng, X.T., Tian, J., Liang, Z.Q., Cui, H.Z.: Ti3C2 MXene-derived Ti3C2/TiO2 nanoflowers for noble-metal-free photocatalytic overall water splitting. Appl. Mater. Today 13, 217–227 (2018)

    Article  Google Scholar 

  131. Hao, N.X., Wei, Y., Wang, J.L., Wang, Z.W., Zhu, Z.H., Zhao, S.L., et al.: In situ hybridization of an MXene/TiO2/NiFeCo-layered double hydroxide composite for electrochemical and photoelectrochemical oxygen evolution. RSC Adv. 8, 20576–20584 (2018)

    Article  CAS  Google Scholar 

  132. Peng, C., Wei, P., Li, X.Y., Liu, Y.P., Cao, Y.H., Wang, H.J., et al.: High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide. Nano Energy 53, 97–107 (2018)

    Article  CAS  Google Scholar 

  133. Ran, J.R., Gao, G.P., Li, F.T., Ma, T.Y., Du, A.J., Qiao, S.Z.: Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 8, 13907 (2017)

    Article  CAS  Google Scholar 

  134. Shao, M.M., Shao, Y.F., Chai, J.W., Qu, Y.J., Yang, M.Y., Wang, Z.L., et al.: Synergistic effect of 2D Ti2C and g-C3N4 for efficient photocatalytic hydrogen production. J. Mater. Chem. A 5, 16748–16756 (2017)

    Article  CAS  Google Scholar 

  135. Du, C.F., Khang Ngoc, D., Liang, Q.H., Zheng, Y., Luo, Y.B., Zhang, J.L., et al.: Self-assemble and in situ formation of Ni1-xFexPS3 nanomosaic-decorated MXene hybrids for overall water splitting. Adv. Energy Mater. 8, 1801127 (2018)

    Article  CAS  Google Scholar 

  136. Su, T.M., Peng, R., Hood, Z.D., Naguib, M., Ivanov, I.N., Keum, J.K., et al.: One-Step Synthesis of Nb2O5/C/Nb2C (MXene) composites and their use as photocatalysts for hydrogen evolution. ChemSusChem 11, 688–699 (2018)

    Article  CAS  Google Scholar 

  137. Zang, L., Sun, W.Y., Liu, S., Huang, Y.K., Yuan, H.T., Tao, Z.L., et al.: Enhanced hydrogen storage properties and reversibility of LiBH4 confined in two-dimensional Ti3C2. ACS Appl. Mater. Interfaces 10, 19598–19604 (2018)

    Article  CAS  Google Scholar 

  138. Wang, S., Du, Y.L., Liao, W.H., Sun, Z.M.: Hydrogen adsorption, dissociation and diffusion on two-dimensional Ti2C monolayer. Int. J. Hydrogen Energy 42, 27214–27219 (2017)

    Article  CAS  Google Scholar 

  139. Li, Y.M., Guo, Y.L., Chen, W.G., Jiao, Z.Y., Ma, S.H.: Reversible hydrogen storage behaviors of Ti2N MXenes predicted by first-principles calculations. J. Mater. Sci. 54, 493–505 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51762023 and 51962013), the Natural Science Foundation of Jiangxi, China (20192ACB20018), and Key R&D Program of Jiangxi Province (20171BBE50006, 20192ACB80007, and 20192ACB80004). Ling Bing Kong would like acknowledge Shenzhen Technology University (SZTU) for financial support through the Start-up Grant (2018) and grant from the Natural Science Foundation of Top Talent of SZTU (grant no. 2019010801002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Bing Kong .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xiao, Z. et al. (2020). Energy Related Applications. In: MXenes and MXenes-based Composites. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-59373-5_4

Download citation

Publish with us

Policies and ethics