Skip to main content

MXenes Based Composites and Hybrids

  • Chapter
  • First Online:
MXenes and MXenes-based Composites

Abstract

MXenes with various compositions and characteristics, which are incorporated with polymers to form nanocomposites, are discussed first. Then, incorporation with other components, such as metallic nanoparticles, nanocarbon materials (graphene, carbon nanotubues and nanofibers), metallic oxides, resulting in nanohybrids, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mashtalir, O., Lukatskaya, M.R., Zhao, M.Q., Barsoum, M.W., Gogotsi, Y.: Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Adv. Mater. 27, 3501–3506 (2015)

    Article  CAS  Google Scholar 

  2. Zhao, M.Q., Ren, C.E., Ling, Z., Lukatskaya, M.R., Zhang, C.F., Van Aken, K.L., et al.: Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 27, 339–345 (2015)

    Article  CAS  Google Scholar 

  3. Boota, M., Anasori, B., Voigt, C., Zhao, M.Q., Barsoum, M.W., Gogotsi, Y.: Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv. Mater. 28, 1517–1522 (2016)

    Article  CAS  Google Scholar 

  4. Xie, X.Q., Zhao, M.Q., Anasori, B., Maleski, K., Ren, C.E., Li, J.W., et al.: Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy. 26, 513–523 (2016)

    Article  CAS  Google Scholar 

  5. Lin, Z.Y., Sun, D.F., Huang, Q., Yang, J., Barsoum, M.W., Yan, X.B.: Carbon nanofiber bridged two-dimensional titanium carbide as a superior anode for lithium-ion batteries. J. Mater. Chem. A 3, 14096–14100 (2015)

    Article  CAS  Google Scholar 

  6. Ng, V.M.H., Huang, H., Zhou, K., Lee, P.S., Que, W.X., Xu, J.Z., et al.: Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. J. Mater. Chem. A 5, 3039–3068 (2017)

    Article  CAS  Google Scholar 

  7. Luo, J.M., Tao, X.Y., Zhang, J., Xia, Y., Huang, H., Zhang, L.Y., et al.: Sn4+ ion decorated highly conductive Ti3C2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 10, 2491–2499 (2016)

    Article  CAS  Google Scholar 

  8. Dall’Agnese, Y., Lukatskaya, M.R., Cook, K.M., Taberna, P.L., Gogotsi, Y., Simon, P.: High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochem. Commun. 48, 118–122 (2014)

    Article  CAS  Google Scholar 

  9. Peng, Q., Guo, J., Zhang, Q., Xiang, J., Liu, B., Zhou, A., et al.: Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J. Am. Chem. Soc. 136, 4113–4116 (2014)

    Article  CAS  Google Scholar 

  10. Yang, C.H., Que, W.X., Yin, X.T., Tian, Y.P., Yang, Y.W., Que, M.D.: Improved capacitance of nitrogen-doped delaminated two-dimensional titanium carbide by urea-assisted synthesis. Electrochim. Acta 225, 416–424 (2017)

    Article  CAS  Google Scholar 

  11. Naguib, M., Mashtalir, O., Lukatskaya, M.R., Dyatkin, B., Zhang, C., Presser, V., et al.: One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. Chem. Commun. 50, 7420–7423 (2014)

    Article  CAS  Google Scholar 

  12. Zhang, C.F., Kim, S.J., Ghidiu, M., Zhao, M.Q., Barsoum, M.W., Nicolosi, V., et al.: Layered orthorhombic Nb2O5@Nb4C3Tx and TiO2@Ti3C2Tx hierarchical composites for high performance Li-ion batteries. Adv. Func. Mater. 26, 4143–4151 (2016)

    Article  CAS  Google Scholar 

  13. Ahmed, B., Anjum, D.H., Hedhili, M.N., Gogotsi, Y., Alshareef, H.N.: H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes. Nanoscale 8, 7580–7587 (2016)

    Article  CAS  Google Scholar 

  14. Gao, Y.P., Wang, L.B., Zhou, A.G., Li, Z.Y., Chen, J.K., Bala, H., et al.: Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity. Mater. Lett. 150, 62–64 (2015)

    Article  CAS  Google Scholar 

  15. Wang, F., Yang, C.H., Duan, M., Tang, Y., Zhu, J.F.: TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances. Biosens. Bioelectron. 74, 1022–1028 (2015)

    Article  CAS  Google Scholar 

  16. Zhu, J.F., Tang, Y., Yang, C.H., Wang, F., Cao, M.J.: Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance. J. Electrochem. Soc. 163, A785–A791 (2016)

    Article  CAS  Google Scholar 

  17. Wang, H., Peng, R., Hood, Z.D., Naguib, M., Adhikari, S.P., Wu, Z.L.: Titania composites with 2D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation. ChemSusChem 9, 1490–1497 (2016)

    Article  CAS  Google Scholar 

  18. Peng, C., Yang, X.F., Li, Y.H., Yu, H., Wang, H.J., Peng, F.: Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 8, 6051–6060 (2016)

    Article  CAS  Google Scholar 

  19. Zhang, Q.R., Teng, J., Zou, G.D., Peng, Q.M., Du, Q., Jiao, T.F., et al.: Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. Nanoscale 8, 7085–7093 (2016)

    Article  CAS  Google Scholar 

  20. Ling, Z., Ren, C.E., Zhao, M.Q., Yang, J., Giammarco, J.M., Qiu, J.S., et al.: Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. 111, 16676–16681 (2014)

    Article  CAS  Google Scholar 

  21. Liu, R.P., Li, W.H.: High-thermal-stability and high-thermal-conductivity Ti3C2Tx MXene/poly(vinyl alcohol) (PVA) composites. ACS Omega 3, 2609–2617 (2018)

    Article  CAS  Google Scholar 

  22. Sobolciak, P., Ali, A., Hassan, M.K., Helal, M.I., Tanvir, A., Popelka, A., et al.: 2D Ti3C2Tx (MXene)-reinforced polyvinyl alcohol (PVA) nanofibers with enhanced mechanical and electrical properties. PLoS ONE 12, e018370 (2017)

    Article  CAS  Google Scholar 

  23. Xu, H.L., Yin, X.W., Li, X.L., Li, M.H., Liang, S., Zhang, L.T., et al.: Lightweight Ti2CTx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces 11, 10198–10207 (2019)

    Article  CAS  Google Scholar 

  24. Naguib, M., Saito, T., Lai, S., Rager, M.S., Aytug, T., Parans Paranthaman, M., et al.: Ti3C2Tx (MXene)-polyacrylamide nanocomposite films. RSC Adv. 6, 72069–72073 (2016)

    Article  CAS  Google Scholar 

  25. Wu, X.L., Hao, L., Zhang, J.K., Zhang, X., Wang, J.T., Liu, J.D.: Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system. J. Membr. Sci. 515, 175–188 (2016)

    Article  CAS  Google Scholar 

  26. Huang, Z.Y., Wang, S.J., Kota, S., Pan, Q.W., Barsoum, M.W., Li, C.Y.: Structure and crystallization behavior of poly(ethylene oxide)/Ti3C2Tx MXene nanocomposites. Polymer 102, 119–126 (2016)

    Article  CAS  Google Scholar 

  27. Mayerberger, E.A., Urbanek, O., McDaniel, R.M., Street, R.M., Barsoum, M.W., Schauer, C.L.: Preparation and characterization of polymer-Ti3C2Tx (MXene) composite nanofibers produced via electrospinning. J. Appl. Polym. Sci. 134, 45295 (2017)

    Article  CAS  Google Scholar 

  28. Chen, J., Chen, K., Tong, D.Y., Huang, Y.J., Zhang, J.W., Xue, J.M., et al.: CO2 and temperature dual responsive “smart” MXene phases. Chem. Commun. 51, 314–317 (2015)

    Article  Google Scholar 

  29. Chen, Z.X., Han, Y.Q., Li, T.X., Zhang, X.W., Wang, T.Q., Zhang, Z.L.: Preparation and electrochemical performances of doped MXene/poly (3,4-ethylenedioxythiophene) composites. Mater. Lett. 220, 305–308 (2018)

    Article  CAS  Google Scholar 

  30. Ren, Y.Y., Zhu, J.F., Wang, L., Liu, H., Liu, Y., Wu, W.L., et al.: Synthesis of polyaniline nanoparticles deposited on two-dimensional titanium carbide for high-performance supercapacitors. Mater. Lett. 214, 84–87 (2018)

    Article  CAS  Google Scholar 

  31. VahidMohammadi, A., Moncada, J., Chen, H.Z., Kayali, E., Orangi, J., Carrero, C.A., et al.: Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance. J. Mater. Chem. A 6, 22123–22133 (2018)

    Article  CAS  Google Scholar 

  32. Wei, H.W., Dong, J.D., Fang, X.J., Zheng, W.H., Sun, Y.T., Qian, Y., et al.: Ti3C2Tx MXene/polyaniline (PANI) sandwich intercalation structure composites constructed for microwave absorption. Compos. Sci. Technol. 169, 52–59 (2019)

    Article  CAS  Google Scholar 

  33. Lu, X., Zhu, J.F., Wu, W.L., Zhang, B.: Hierarchical architecture of PANI@TiO2/Ti3C2Tx ternary composite electrode for enhanced electrochemical performance. Electrochim. Acta 228, 282–289 (2017)

    Article  CAS  Google Scholar 

  34. Levitt, A.S., Alhabeb, M., Hatter, C.B., Sarycheva, A., Dion, G., Gogotsi, Y.: Electrospun MXene/carbon nanofibers as supercapacitor electrodes. J. Mater. Chem. A 7, 269–277 (2019)

    Article  CAS  Google Scholar 

  35. Ghidiu, M., Kota, S., Halim, J., Sherwood, A.W., Nedfors, N., Rosen, J., et al.: Alkylammonium cation intercalation into Ti3C2 (MXene): effects on properties and ion-exchange capacity estimation. Chem. Mater. 29, 1099–1106 (2017)

    Article  CAS  Google Scholar 

  36. Yan, P.T., Zhang, R.J., Jia, J., Wu, C., Zhou, A.G., Xu, J., et al.: Enhanced supercapacitive performance of delaminated two-dimensional titanium carbide/carbon nanotube composites in alkaline electrolyte. J. Power Sources 284, 38–43 (2015)

    Article  CAS  Google Scholar 

  37. Yu, P., Cao, G.J., Yi, S., Zhang, X., Li, C., Sun, X.Z., et al.: Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. Nanoscale 10, 5906–5913 (2018)

    Article  CAS  Google Scholar 

  38. Li, X.L., Yin, X.W., Han, M.K., Song, C.Q., Xu, H.L., Hou, Z.X., et al.: Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 5, 4068–4074 (2017)

    Article  CAS  Google Scholar 

  39. Li, X.L., Zhu, J.F., Wang, L., Wu, W.L., Fang, Y.: In-situ growth of carbon nanotubes on two-dimensional titanium carbide for enhanced electrochemical performance. Electrochim. Acta 258, 291–301 (2017)

    Article  CAS  Google Scholar 

  40. Zheng, W., Zhang, P., Chen, J., Tian, W.B., Zhang, Y.M., Sun, Z.M.: In situ synthesis of CNTs@Ti3C2 hybrid structures by microwave irradiation for high-performance anodes in lithium ion batteries. J. Mater. Chem. A 6, 3543–3551 (2018)

    Article  CAS  Google Scholar 

  41. Zhang, Y.K., Jiang, H.L., Lin, Y.X., Liu, H.J., He, Q., Wu, C.Q., et al.: In situ growth of cobalt nanoparticles encapsulated nitrogen-doped carbon nanotubes among Ti3C2Tx (MXene) matrix for oxygen reduction and evolution. Adv. Mater. Interfaces 5, 1800392 (2018)

    Article  CAS  Google Scholar 

  42. Chen, J.N., Yuan, X.L., Lyu, F.L., Zhong, Q.X., Hu, H.C., Pan, Q., et al.: Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction. J. Mater. Chem. A 7, 1281–1286 (2019)

    Article  CAS  Google Scholar 

  43. Yang, L., Zheng, W., Zhang, P., Chen, J., Tian, W.B., Zhang, Y.M., et al.: MXene/CNTs films prepared by electrophoretic deposition for supercapacitor electrodes. J. Electroanal. Chem. 830, 1–6 (2018)

    Google Scholar 

  44. Lv, L.P., Guo, C.F., Sun, W.W., Wang, Y.: Strong surface-bound sulfur in carbon nanotube bridged hierarchical Mo2C-based MXene nanosheets for lithium-sulfur batteries. Small 15, 1804338 (2019)

    Google Scholar 

  45. Aïssa, B., Ali, A., Mahmoud, K.A., Haddad, T., Nedil, M.: Transport properties of a highly conductive 2D Ti3C2Tx MXene/graphene composite. Appl. Phys. Lett. 109, 043109 (2016)

    Article  CAS  Google Scholar 

  46. Li, H.Y., Hou, Y., Wang, F.X., Lohe, M.R., Zhuang, X.D., Niu, L., et al.: Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene. Adv. Energy Mater. 7, 1601847 (2017)

    Article  CAS  Google Scholar 

  47. Yan, J., Ren, C.E., Maleski, K., Hatter, C.B., Anasori, B., Urbankowski, P., et al.: Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Func. Mater. 27, 1701264 (2017)

    Article  CAS  Google Scholar 

  48. Xu, S.K., Wei, G.D., Li, J.Z., Han, W., Gogotsi, Y.: Flexible MXene-graphene electrodes with high volumetric capacitance for integrated co-cathode energy conversion/storage devices. J. Mater. Chem. A 5, 17442–17451 (2017)

    Article  CAS  Google Scholar 

  49. Yang, Q.Y., Xu, Z., Fang, B., Huang, T.Q., Cai, S.Y., Chen, H., et al.: MXene/graphene hybrid fibers for high performance flexible supercapacitors. J. Mater. Chem. A 5, 22113–22119 (2017)

    Article  CAS  Google Scholar 

  50. Ma, Z.Y., Zhou, X.F., Deng, W., Lei, D., Liu, Z.P.: 3D porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage. ACS Appl. Mater. Interfaces 10, 3634–3643 (2018)

    Article  CAS  Google Scholar 

  51. Xu, S.K., Dall’Agnese, Y., Li, J.Z., Gogotsi, Y., Han, W.: Thermally reduced graphene/MXene film for enhanced Li-ion storage. Chem. A Eur. J. 24, 18556–18563 (2018)

    Article  CAS  Google Scholar 

  52. Ma, Y.N., Yue, Y., Zhang, H., Cheng, F., Zhao, W.Q., Rao, J.Y., et al.: 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12, 3209–3216 (2018)

    Article  CAS  Google Scholar 

  53. Yue, Y., Liu, N.S., Ma, Y.N., Wang, S.L., Liu, W.J., Luo, C., et al.: Highly self-healable 3D microsupercapacitor with MXene-graphene composite aerogel. ACS Nano 12, 4224–4232 (2018)

    Article  CAS  Google Scholar 

  54. Zhao, S., Zhang, H.B., Luo, J.Q., Wang, Q.W., Xu, B., Hong, S., et al.: Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12, 11193–11202 (2018)

    Article  CAS  Google Scholar 

  55. Qu, L.L., Wang, S.P., Yang, X.W., Sun, C.J.: MXene/reduced graphene oxide hydrogel film extraction combined with gas chromatography-tandem mass spectrometry for the determination of 16 polycyclic aromatic hydrocarbons in river and tap water. J. Chromatogr. A 1584, 24–32 (2019)

    Article  CAS  Google Scholar 

  56. Ma, T.Y., Cao, J.L., Jaroniec, M., Qiao, S.Z.: Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew. Chem. Int. Ed. 55, 1138–1142 (2016)

    Article  CAS  Google Scholar 

  57. Shao, M.M., Shao, Y.F., Chai, J.W., Qu, Y.J., Yang, M.Y., Wang, Z.L., et al.: Synergistic effect of 2D Ti2C and g-C3N4 for efficient photocatalytic hydrogen production. J. Mater. Chem. A 5, 16748–16756 (2017)

    Article  CAS  Google Scholar 

  58. Su, T.M., Hood, Z.D., Naguib, M., Bai, L., Luo, S., Rouleau, C.M., et al.: 2D/2D heterojunction of Ti3C2/g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution. Nanoscale, 30788480 (2019)

    Google Scholar 

  59. An, X.Q., Wang, W., Wang, J.P., Duan, H.Z., Shi, J.T., Yu, X.L.: The synergetic effects of Ti3C2 MXene and Pt as co-catalysts for highly efficient photocatalytic hydrogen evolution over g-C3N4. Phys. Chem. Chem. Phys. 20, 11405–11411 (2018)

    Article  CAS  Google Scholar 

  60. Zou, G.D., Zhang, Z.W., Guo, J.X., Liu, B.Z., Zhang, Q.R., Fernandez, C., et al.: Synthesis of MXene/Ag composites for extraordinary long cycle lifetime lithium storage at high rates. ACS Appl. Mater. Interfaces 8, 22280–22286 (2016)

    Article  CAS  Google Scholar 

  61. Li, L., Zhang, N., Zhang, M.Y., Wu, L., Zhang, X.T., Zhang, Z.G.: Ag-nanoparticle-decorated 2D titanium carbide (MXene) with superior electrochemical performance for supercapacitors. ACS Sustain. Chem. Eng. 6, 7442–7450 (2018)

    Article  CAS  Google Scholar 

  62. Zhang, Z.W., Li, H.N., Zou, G.D., Fernandez, C., Liu, B.Z., Zhang, Q.R., et al.: Self-reduction synthesis of new MXene/Ag composites with unexpected electrocatalytic activity. ACS Sustain. Chem. Eng. 4, 6763–6771 (2016)

    Article  CAS  Google Scholar 

  63. Pandey, R.P., Rasool, K., Madhavan, V.E., Aissa, B., Gogotsi, Y., Mahmoud, K.A.: Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets. J. Mater. Chem. A 6, 3522–3533 (2018)

    Article  CAS  Google Scholar 

  64. Song, D.D., Jiang, X.Y., Li, Y.S., Lu, X., Luan, S.R., Wang, Y.Z., et al.: Metal-organic frameworks-derived MnO2/Mn3O4 microcuboids with hierarchically ordered nanosheets and Ti3C2 MXene/Au NPs composites for electrochemical pesticide detection. J. Hazard. Mater. 373, 367–376 (2019)

    Article  CAS  Google Scholar 

  65. Tang, W.T., Dong, Z.L., Zhang, R., Yi, X., Yang, K., Jin, M.L., et al.: Multifunctional two-dimensional core-shell MXene@gold nanocomposites for enhanced photo-radio combined therapy in the second biological window. ACS Nano 13, 284–294 (2019)

    Article  CAS  Google Scholar 

  66. Xie, H.H., Li, P.H., Shao, J.D., Huang, H., Chen, Y., Jiang, Z.Y., et al.: Electrostatic self-assembly of Ti3C2Tx MXene and gold nanorods as an efficient surface-enhanced Raman scattering platform for reliable and high-densitivity determination of organic pollutants. ACS Sens. 4, 2303–2310 (2019)

    Article  CAS  Google Scholar 

  67. Lorencova, L., Bertok, T., Filip, J., Jerigova, M., Velic, D., Kasak, P., et al.: Highly stable Ti3C2Tx (MXene)/Pt nanoparticles-modified glassy carbon electrode for H2O2 and small molecules sensing applications. Sens. Actuators B Chem. 263, 360–368 (2018)

    Article  CAS  Google Scholar 

  68. Filip, J., Zavahir, S., Lorencova, L., Bertok, T., Bin Yousaf, A., Mahmoud, K.A., et al.: Tailoring electrocatalytic properties of Pt nanoparticles grown on Ti3C2Tx MXene surface. J. Electrochem. Soc. 166, H54–H62 (2019)

    Article  CAS  Google Scholar 

  69. Wang, Y.J., Wang, J.K., Han, G.K., Du, C.Y., Deng, Q.H., Gao, Y.Z., et al.: Pt decorated Ti3C2 MXene for enhanced methanol oxidation reaction. Ceram. Int. 45, 2411–2417 (2019)

    Article  CAS  Google Scholar 

  70. Yin, J.J., Zhang, L., Jiao, T.F., Zou, G.D., Bai, Z.H., Chen, Y., et al.: Highly efficient catalytic performances of nitro compounds and morin via self-assembled MXene-Pd nanocomposites synthesized through self-reduction strategy. Nanomaterials 9, 1009 (2019)

    Article  CAS  Google Scholar 

  71. Satheeshkumar, E., Makaryan, T., Melikyan, A., Minassian, H., Gogotsi, Y., Yoshimura, M.: One-step solution processing of Ag, Au and Pd@MXene hybrids for SERS. Sci. Rep. 6, 32049 (2016)

    Article  CAS  Google Scholar 

  72. Zheng, J.S., Wang, B., Ding, A.L., Weng, B., Chen, J.C.: Synthesis of MXene/DNA/Pd/Pt nanocomposite for sensitive detection of dopamine. J. Electroanal. Chem. 816, 189–194 (2018)

    Article  CAS  Google Scholar 

  73. Ghassemi, H., Harlow, W., Mashtalir, O., Beidaghi, M., Lukatskaya, M.R., Gogotsi, Y., et al.: In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbon-supported TiO2. J. Mater. Chem. A 2, 14339–14343 (2014)

    Article  CAS  Google Scholar 

  74. Li, Z.Y., Wang, L.B., Sun, D.D., Zhang, Y.D., Liu, B.Z., Hu, Q.K., et al.: Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater. Sci. Eng. B 191, 33–40 (2015)

    Article  CAS  Google Scholar 

  75. Li, J.X., Du, Y.L., Huo, C.X., Wang, S., Cui, C.: Thermal stability of two-dimensional Ti2C nanosheets. Ceram. Int. 41, 2631–2635 (2015)

    Article  CAS  Google Scholar 

  76. Rakhi, R.B., Ahmed, B., Hedhili, M.N., Anjum, D.H., Alshareef, H.N.: Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem. Mater. 27, 5314–5323 (2015)

    Article  CAS  Google Scholar 

  77. Xiao, S.H., Zhang, X.Q., Zhang, J.W., Wu, S.M., Wang, J., Chen, J.S., et al.: Enhancing the lithium storage capabilities of TiO2 nanoparticles using delaminated MXene supports. Ceram. Int. 44, 17660–17666 (2018)

    Article  CAS  Google Scholar 

  78. Gao, X.T., Xie, Y., Zhu, X.D., Sun, K.N., Xie, X.M., Liu, Y.T., et al.: Ultrathin MXene nanosheets decorated with TiO2 quantum dots as an efficient sulfur host toward fast and stable Li-S batteries. Small 14, 1802443 (2018)

    Article  CAS  Google Scholar 

  79. Du, C., Wu, J., Yang, P., Li, S.Y., Xu, J.M., Song, K.X.: Embedding S@TiO2 nanospheres into MXene layers as high rate cyclability cathodes for lithium-sulfur batteries. Electrochim. Acta 295, 1067–1074 (2019)

    Article  CAS  Google Scholar 

  80. Chen, X., Lia, J., Pan, G.C., Xu, W., Zhu, J.Y., Zhou, D.L., et al.: Ti3C2 MXene quantum dots/TiO2 inverse opal heterojunction electrode platform for superior photoelectrochemical biosensing. Sens. Actuators B Chem. 289, 131–137 (2019)

    Article  CAS  Google Scholar 

  81. Li, Y.J., Deng, X.T., Tian, J., Liang, Z.Q., Cui, H.Z.: Ti3C2 MXene-derived Ti3C2/TiO2 nanoflowers for noble-metal-free photocatalytic overall water splitting. Appl. Mater. Today. 13, 217–227 (2018)

    Article  Google Scholar 

  82. Low, J.X., Zhang, L.Y., Tong, T., Shen, B.J., Yu, J.G.: TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J. Catal. 361, 255–266 (2018)

    Article  CAS  Google Scholar 

  83. Zhang, J., Yang, L., Wang, H.B., Zhu, G.L., Wen, H., Feng, H., et al.: In situ hydrothermal growth of TiO2 nanoparticles on a conductive Ti3C2Tx MXene nanosheet: a synergistically active Ti-based nanohybrid electrocatalyst for enhanced N2 reduction to NH3 at ambient conditions. Inorg. Chem. (2019)

    Google Scholar 

  84. Xu, Z., Sun, Y.Q., Zhuang, Y.X., Jing, W.H., Ye, H., Cui, Z.F.: Assembly of 2D MXene nanosheets and TiO2 nanoparticles for fabricating mesoporous TiO2-MXene membranes. J. Membr. Sci. 564, 35–43 (2018)

    Article  CAS  Google Scholar 

  85. Hao, N.X., Wei, Y., Wang, J.L., Wang, Z.W., Zhu, Z.H., Zhao, S.L., et al.: In situ hybridization of an MXene/TiO2/NiFeCo-layered double hydroxide composite for electrochemical and photoelectrochemical oxygen evolution. RSC Adv. 8, 20576–20584 (2018)

    Article  CAS  Google Scholar 

  86. Li, Y.J., Yin, Z.H., Ji, G.R., Liang, Z.Q., Xue, Y.J., Guo, Y.C., et al.: 2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity. Appl. Catal. B Environ. 246, 12–20 (2019)

    Article  CAS  Google Scholar 

  87. Huang, Y.Y., Zhuo, G., Han, L., Wang, Y.Y., Kang, S.M., Lu, J.J.: Facile synthesis and application of V2O5/MXene nanocomposites as electrode materials for supercapacitors. Nanosci. Nanotechnol. Lett. 10, 1633–1643 (2018)

    Article  Google Scholar 

  88. Wu, F., Jiang, Y., Ye, Z.Q., Huang, Y.X., Wang, Z.H., Li, S.J., et al.: A 3D flower-like VO2/MXene hybrid architecture with superior anode performance for sodium ion batteries. J. Mater. Chem. A 7, 1315–1322 (2019)

    Article  CAS  Google Scholar 

  89. Rakhi, R.B., Ahmed, B., Anjum, D.H., Alshareef, H.N.: Direct chemical synthesis of MnO2 nanowhiskers on transition-metal carbide surfaces for supercapacitor applications. ACS Appl. Mater. Interfaces 8, 18806–18814 (2016)

    Article  CAS  Google Scholar 

  90. Jiang, H.M., Wang, Z.G., Yang, Q., Hanif, M., Wang, Z.M., Dong, L.C., et al.: A novel MnO2/Ti3C2Tx MXene nanocomposite as high performance electrode materials for flexible supercapacitors. Electrochim. Acta 290, 695–703 (2018)

    Article  CAS  Google Scholar 

  91. Chen, S.G., Xiang, Y.F., Xu, W.J., Peng, C.: A novel MnO2/MXene composite prepared by electrostatic self-assembly and its use as an electrode for enhanced supercapacitive performance. Inorg. Chem. Front. 6, 199–208 (2019)

    Article  CAS  Google Scholar 

  92. Wang, Q.T., Zhang, Z.H., Zhang, Z., Zhou, X.Z., Ma, G.F.: Facile synthesis of MXene/MnO2 composite with high specific capacitance. J. Solid State Electrochem. 23, 361–365 (2019)

    Article  CAS  Google Scholar 

  93. Tian, Y.P., Yang, C.H., Que, W.X., Liu, X.B., Yin, X.T., Kong, L.B.: Flexible and free-standing 2D titanium carbide film decorated with manganese oxide nanoparticles as a high volumetric capacity electrode for supercapacitor. J. Power Sources 359, 332–339 (2017)

    Article  CAS  Google Scholar 

  94. Tang, X., Liu, H., Guo, X., Wang, S.J., Wu, W.J., Mondal, A.K., et al.: A novel lithium-ion hybrid capacitor based on an aerogel-like MXene wrapped Fe2O3 nanosphere anode and a 3D nitrogen sulphur dual-doped porous carbon cathode. Mater. Chem. Front. 2, 1811–1821 (2018)

    Article  CAS  Google Scholar 

  95. Zhang, H.L., Li, M., Cao, J.L., Tang, Q.J., Kang, P., Zhu, C.X., et al.: 2D a-Fe2O3 doped Ti3C2 MXene composite with enhanced visible light photocatalytic activity for degradation of Rhodamine B. Ceram. Int. 44, 19958–19962 (2018)

    Article  CAS  Google Scholar 

  96. Li, F., Liu, Y.L., Wang, G.G., Zhang, H.Y., Zhang, B., Li, G.Z., et al.: Few-layered Ti3C2Tx MXenes coupled with Fe2O3 nanorod arrays grown on carbon cloth as anodes for flexible asymmetric supercapacitors. J. Mater. Chem. A 7, 22631–22641 (2019)

    Article  CAS  Google Scholar 

  97. Liu, P.J., Ng, V.M.H., Yao, Z.J., Zhou, J.T., Kong, L.B.: Ultrasmall Fe3O4 nanoparticles on MXenes with high microwave absorption performance. Mater. Lett. 229, 286–289 (2018)

    Article  CAS  Google Scholar 

  98. Liu, P.J., Yao, Z.J., Ng, V.M.H., Zhou, J.T., Kong, L.B., Yue, K.: Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance. Compos. Part A Appl. Sci. Manuf. 115, 371–382 (2018)

    Article  CAS  Google Scholar 

  99. Wang, Y.S., Li, Y.Y., Qiu, Z.P., Wu, X.Z., Zhou, P.F., Zhou, T., et al.: Fe3O4@Ti3C2 MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries. J. Mater. Chem. A 6, 11189–11197 (2018)

    Article  CAS  Google Scholar 

  100. Zhang, X., Wang, H.H., Hu, R., Huang, C.Y., Zhong, W.J., Pan, L.M., et al.: Novel solvothermal preparation and enhanced microwave absorption properties of Ti3C2Tx MXene modified by in situ coated Fe3O4 nanoparticles. Appl. Surf. Sci. 484, 383–391 (2019)

    Article  CAS  Google Scholar 

  101. Adeyemo, A.A., Adeoye, I.O., Bello, O.S.: Metal organic frameworks as adsorbents for dye adsorption: overview, prospects and future challenges. Toxicol. Environ. Chem. 94, 1846–1863 (2012)

    Article  CAS  Google Scholar 

  102. Huang, X.X., Wang, R., Jiao, T.F., Zou, G.D., Zhan, F.K., Yin, J.J., et al.: Facile preparation of hierarchical AgNP-loaded MXene/Fe3O4/Polymer nanocomposites by electrospinning with enhanced catalytic performance for wastewater treatment. ACS Omega 4, 1897–1906 (2019)

    Article  CAS  Google Scholar 

  103. Liu, Y.X., Luo, R., Li, Y., Qi, J.W., Wang, C.H., Li, J.S., et al.: Sandwich-like Co3O4/MXene composite with enhanced catalytic performance for Bisphenol A degradation. Chem. Eng. J. 347, 731–740 (2018)

    Article  CAS  Google Scholar 

  104. Luo, S.S., Wang, R., Yin, J.J., Jiao, T.F., Chen, K.Y., Zou, G.D., et al.: Preparation and dye degradation performances of self-assembled MXene-Co3O4 nanocomposites synthesized via solvothermal approach. ACS Omega 4, 3946–3953 (2019)

    Article  CAS  Google Scholar 

  105. Deng, R.X., Chen, B.B., Li, H.G., Zhang, K., Zhang, T., Yu, Y., et al.: MXene/Co3O4 composite material: Stable synthesis and its enhanced broadband microwave absorption. Appl. Surf. Sci. 488, 921–930 (2019)

    Article  CAS  Google Scholar 

  106. Wang, C., Zhu, X.D., Mao, Y.C., Wang, F., Gao, X.T., Qiu, S.Y., et al.: MXene-supported Co3O4 quantum dots for superior lithium storage and oxygen evolution activities. Chem. Commun. 55, 1237–1240 (2019)

    Article  CAS  Google Scholar 

  107. Tan, L.H., Lv, J., Xu, X.R., Zhao, H.F., He, C.M., Wang, H., et al.: Construction of MXene/NiO composites through in-situ precipitation strategy for dispersibility improvement of NiO nanoparticles. Ceram. Int. 45, 6597–6600 (2019)

    Article  CAS  Google Scholar 

  108. Zhao, H.F., Lv, J., Sang, J.S., Zhu, L., Zheng, P., Andrew, G.L., et al.: A facile method to construct MXene/CuO nanocomposite with enhanced catalytic activity of CuO on thermal decomposition of ammonium perchlorate. Materials 11, 2457 (2018)

    Article  CAS  Google Scholar 

  109. Gao, Y.P., Wang, L.B., Li, Z.Y., Zhou, A.G., Hu, Q.K., Cao, X.X.: Preparation of MXene-Cu2O nanocomposite and effect on thermal decomposition of ammonium perchlorate. Solid State Sci. 35, 62–65 (2014)

    Article  CAS  Google Scholar 

  110. Zeng, Z.P., Yan, Y.B., Chen, J., Zan, P., Tian, Q.H., Chen, P.: Boosting the photocatalytic ability of Cu2O nanowires for CO2 conversion by MXene quantum dots. Adv. Func. Mater. 29, 1806500 (2019)

    Article  CAS  Google Scholar 

  111. Wang, F., Cao, M.J., Qin, Y., Zhu, J.F., Wang, L., Tang, Y.: ZnO nanoparticle-decorated two-dimensional titanium carbide with enhanced supercapacitive performance. RSC Adv. 6, 88934–88942 (2016)

    Article  CAS  Google Scholar 

  112. Qian, Y., Wei, H.W., Dong, J.D., Du, Y.Z., Fang, X.J., Zheng, W.H., et al.: Fabrication of urchin-like ZnO-MXene nanocomposites for high-performance electromagnetic absorption. Ceram. Int. 43, 10757–10762 (2017)

    Article  CAS  Google Scholar 

  113. Guo, J., Legum, B., Anasori, B., Wang, K., Lelyukh, P., Gogotsi, Y., et al.: Cold sintered ceramic nanocomposites of 2D MXene and zinc oxide. Adv. Mater. 30, 1801846 (2018)

    Article  CAS  Google Scholar 

  114. Zhang, C.F., Beidaghi, M., Naguib, M., Lukatskaya, M.R., Zhao, M.Q., Dyatkin, B., et al.: Synthesis and charge storage properties of hierarchical niobium pentoxide/carbon/niobium carbide (MXene) hybrid materials. Chem. Mater. 28, 3937–3943 (2016)

    Article  CAS  Google Scholar 

  115. Ambade, S.B., Ambade, R.B., Eom, W., Noh, S.H., Kim, S.H., Han, T.H.: 2D Ti3C2 MXene/WO3 hybrid architectures for high-rate supercapacitors. Adv. Mater. Interfaces 5, 1801361 (2018)

    Article  CAS  Google Scholar 

  116. Peng, C., Kuai, Z.Y., Zeng, T.Q., Yu, Y., Li, Z.F., Zuo, J.T., et al.: WO3 Nanorods/MXene composite as high performance electrode for supercapacitors. J. Alloy. Compd. 810, 151928 (2019)

    Article  CAS  Google Scholar 

  117. Wang, F., Wang, Z.J., Zhu, J.F., Yang, H.B., Chen, X.J., Wang, L., et al.: Facile synthesis SnO2 nanoparticle-modified Ti3C2 MXene nanocomposites for enhanced lithium storage application. J. Mater. Sci. 52, 3556–3565 (2017)

    Article  CAS  Google Scholar 

  118. Ahmed, B., Anjum, D.H., Gogotsi, Y., Alshareef, H.N.: Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes. Nano Energy 34, 249–256 (2017)

    Article  CAS  Google Scholar 

  119. Xiong, J., Pan, L.M., Wang, H.H., Du, F., Chen, Y.M., Yang, J., et al.: Synergistically enhanced lithium storage performance based on titanium carbide nanosheets (MXene) backbone and SnO2 quantum dots. Electrochim. Acta 268, 503–511 (2018)

    Article  CAS  Google Scholar 

  120. Liu, H., Zhang, X., Zhu, Y.F., Cao, B., Zhu, Q.Z., Zhang, P., et al.: Electrostatic self-assembly of 0D–2D SnO2 quantum dots/Ti3C2Tx MXene hybrids as anode for lithium-ion batteries. Nano-Micro Lett. 11, 65 (2019)

    Article  CAS  Google Scholar 

  121. Yang, L., Dall’Agnese, Y., Hantanasirisakul, K., Shuck, C.E., Maleski, K., Alhabeb, M., et al.: SnO2-Ti3C2 MXene electron transport layers for perovskite solar cells. J. Mater. Chem. A 7, 5635–5642 (2019)

    Article  CAS  Google Scholar 

  122. Tariq, A., Ali, S.I., Akinwande, D., Rizwan, S.: Efficient visible-light photocatalysis of 2D-MXene nanohybrids with Gd3+- and Sn4+-codoped bismuth ferrite. ACS Omega 3, 13828–13836 (2018)

    Article  CAS  Google Scholar 

  123. Iqbal, M.A., Ali, S.I., Amin, F., Tariq, A., Iqbal, M.Z., Rizwan, S.: La- and Mn-codoped bismuth ferrite/Ti3C2 MXene composites for efficient photocatalytic degradation of Congo red dye. ACS Omega 4, 8661–8668 (2019)

    Article  CAS  Google Scholar 

  124. Lu, M., Li, H.J., Han, W.J., Wang, Y.Z., Shi, W., Wang, J.H., et al.: Integrated MXene&CoFe2O4 electrodes with multi-level interfacial architectures for synergistic lithium-ion storage. Nanoscale 11, 15037–15042 (2019)

    Article  CAS  Google Scholar 

  125. Tang, Y., Yang, C.H., Yang, Y.W., Yin, X.T., Que, W.X., Zhu, J.F.: Three dimensional hierarchical network structure of S-NiFe2O4 modified few-layer titanium carbides (MXene) flakes on nickel foam as a high efficient electrocatalyst for oxygen evolution. Electrochim. Acta 296, 762–770 (2019)

    Article  CAS  Google Scholar 

  126. Liu, P.J., Yao, Z.J., Ng, V.M.H., Zhou, J.T., Kong, L.B.: Novel multilayer-like structure of Ti3C2Tx/CNZF composites for low-frequency electromagnetic absorption. Mater. Lett. 248, 214–217 (2019)

    Article  CAS  Google Scholar 

  127. Li, B.H., Guo, H.R., Wang, Y.R., Zhang, W.X., Zhang, Q.J., Chen, L., et al.: Asymmetric MXene/monolayer transition metal dichalcogenide heterostructures for functional applications. NPJ Comput. Mater. 5, 16 (2019)

    Article  CAS  Google Scholar 

  128. Ma, Z.N., Hu, Z.P., Zhao, X.D., Tang, Q., Wu, D.H., Zhou, Z., et al.: Tunable band structures of heterostructured bilayers with transition-metal dichalcogenide and MXene monolayer. J. Phys. Chem. C 118, 5593–5599 (2014)

    Article  CAS  Google Scholar 

  129. Wang, C., Zhu, X.D., Wang, K.X., Gu, L.L., Qiu, S.Y., Gao, X.T., et al.: A general way to fabricate transition metal dichalcogenide/oxide-sandwiched MXene nanosheets as flexible film anodes for high-performance lithium storage. Sustain. Energy Fuels 3, 2577–2582 (2019)

    Article  CAS  Google Scholar 

  130. Xu, Y., Ang, Y.S., Wu, L., Ang, L.K.: High sensitivity surface plasmon resonance sensor based on two-dimensional MXene and transition metal dichalcogenide: a theoretical study. Nanomaterials. 9, 165 (2019)

    Article  CAS  Google Scholar 

  131. Xu, J., Shim, J., Park, J.H., Lee, S.: MXene electrode for the integration of WSe2 and MoS2 field effect transistors. Adv. Func. Mater. 26, 5328–5334 (2016)

    Article  CAS  Google Scholar 

  132. Shen, C.J., Wang, L.B., Zhou, A.G., Zhang, H., Chen, Z.H., Hu, Q.K., et al.: MoS2-decorated Ti3C2 MXene nanosheet as anode material in lithium-lon batteries. J. Electrochem. Soc. 164, A2654–A2659 (2017)

    Article  CAS  Google Scholar 

  133. Chen, C., Xie, X.Q., Anasori, B., Sarycheva, A., Makaryan, T., Zhao, M.Q., et al.: MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew. Chem. Int. Ed. 57, 1846–1850 (2018)

    Article  CAS  Google Scholar 

  134. Zhang, Y.L., Mu, Z.J., Yang, C., Xu, Z.K., Zhang, S., Zhang, X.Y., et al.: Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium-sulfur batteries. Adv. Func. Mater. 28, 1707578 (2018)

    Article  CAS  Google Scholar 

  135. Wu, Y.T., Nie, P., Jiang, J.M., Ding, B., Dou, H., Zhang, X.G.: MoS2-nanosheet-decorated 2D titanium carbide (MXene) as high-performance anodes for sodium-ion batteries. ChemElectroChem 4, 1560–1565 (2017)

    Article  CAS  Google Scholar 

  136. Xu, M., Bai, N., Li, H.X., Hu, C., Qi, J., Yan, X.B.: Synthesis of MXene-supported layered MoS2 with enhanced electrochemical performance for Mg batteries. Chin. Chem. Lett. 29, 1313–1316 (2018)

    Article  CAS  Google Scholar 

  137. Attanayake, N.H., Abeyweera, S.C., Thenuwara, A.C., Anasori, B., Gogotsi, Y., Sun, Y.G., et al.: Vertically aligned MoS2 on Ti3C2 (MXene) as an improved HER catalyst. J. Mater. Chem. A 6, 16882–16889 (2018)

    Article  CAS  Google Scholar 

  138. Yang, X.L., Jia, Q.J., Duan, F.H., Hu, B., Wang, M.H., He, L.H., et al.: Multiwall carbon nanotubes loaded with MoS2 quantum dots and MXene quantum dots: non-Pt bifunctional catalyst for the methanol oxidation and oxygen reduction reactions in alkaline solution. Appl. Surf. Sci. 464, 78–87 (2019)

    Article  CAS  Google Scholar 

  139. Liang, J.M., Ding, C.Y., Liu, J.P., Chen, T., Peng, W.C., Li, Y., et al.: Heterostructure engineering of Co-doped MoS2 coupled with Mo2CTx MXene for enhanced hydrogen evolution in alkaline media. Nanoscale 11, 10992–11000 (2019)

    Article  CAS  Google Scholar 

  140. You, J.X., Si, C., Zhou, J., Sun, Z.M.: Contacting MoS2 to MXene: vanishing p-type Schottky barrier and enhanced hydrogen evolution catalysis. J. Phys. Chem. C 123, 3719–3726 (2019)

    Article  CAS  Google Scholar 

  141. Alimohammadi, F., Sharifian, G.M., Attanayake, N.H., Thenuwara, A.C., Gogotsi, Y., Anasori, B., et al.: Antimicrobial properties of 2D MnO2 and MoS2 nanomaterials vertically aligned on graphene materials and Ti3C2 MXene. Langmuir 34, 7192–7200 (2018)

    Article  CAS  Google Scholar 

  142. Zhao, P., Jin, H., Lv, X.S., Huang, B.B., Ma, Y.D., Dai, Y.: Modified MXene: promising electrode materials for constructing Ohmic contacts with MoS2 for electronic device applications. Phys. Chem. Chem. Phys. 20, 16551–16557 (2018)

    Article  CAS  Google Scholar 

  143. Huang, H.W., Cui, J., Liu, G.X., Bi, R., Zhang, L.: Carbon-coated MoSe2/MXene hybrid nanosheets for superior potassium storage. ACS Nano 13, 3448–3456 (2019)

    Article  CAS  Google Scholar 

  144. Li, N., Zhang, Y.F., Jia, M.L., Lv, X.D., Li, X.T., Li, R., et al.: 1T/2H MoSe2-on-MXene heterostructure as bifunctional electrocatalyst for efficient overall water splitting. Electrochim. Acta 326, 134976 (2019)

    Article  CAS  Google Scholar 

  145. Su, W.T., Wang, S.G., Fu, L., Chen, F., Song, K.X., Huang, X.W., et al.: Growth of WS2 flakes on Ti3C2Tx Mxene using vapor transportation routine. Coatings 8, 281 (2018)

    Article  CAS  Google Scholar 

  146. Vyskocil, J., Mayorga-Martinez, C.C., Szokolova, K., Dash, A., Gonzalez-Julian, J., Sofer, Z., et al.: 2D stacks of MXene Ti3C2 and 1T-phase WS2 with enhanced capacitive behavior. ChemElectroChem 6, 3982–3986 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51762023 and 51962013), the Natural Science Foundation of Jiangxi, China (20192ACB20018), and Key R&D Program of Jiangxi Province (20171BBE50006, 20192ACB80007, and 20192ACB80004). Ling Bing Kong would like acknowledge Shenzhen Technology University (SZTU) for financial support through the Start-up Grant (2018) and grant from the Natural Science Foundation of Top Talent of SZTU (grant no. 2019010801002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Bing Kong .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xiao, Z. et al. (2020). MXenes Based Composites and Hybrids. In: MXenes and MXenes-based Composites. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-59373-5_3

Download citation

Publish with us

Policies and ethics