Skip to main content

Fibrinolysis, Antifibrinolytic Agents, and Perioperative Considerations

  • Chapter
  • First Online:
Essentials of Blood Product Management in Anesthesia Practice

Abstract

Fibrinolysis is an integral component of hemostasis that acts to regulate fibrin formation. Its actions are counterbalanced by the coagulation process, maintaining against excess clot formation or hemorrhage. Excessive release of plasmin through surgery or other means can result in a pathophysiological state characterized by bleeding, inflammation, and coagulopathy. Measurement of this fibrinolytic activity is often done in the clinical setting using viscoelastic testing; however, there is no gold standard. The antifibrinolytics tranexamic acid, epsilon-aminocaproic acid, and aprotinin act to reduce bleeding and transfusion requirements in the perioperative setting. Despite widespread concerns for thromboembolic complications, data has shown their relative safety. Tranexamic acid has been the most widely studied and utilized agent and is well tolerated with minimal side effects. The concern for seizure activity, particularly associated with cardiac surgery, has been diminished with appropriate dosing of tranexamic acid. The popularity of tranexamic acid in trauma is based on the CRASH-2 study, but the controversy surrounding fibrinolytic shutdown has limited its use in many centers. Orthopedics, liver surgery and transplantation, obstetrics, neurosurgery, and pediatric surgery have all extensively studied and implemented tranexamic acid to reduce blood loss and transfusion requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A2AP:

Alpha-2-antiplasmin

ACT:

Activated clotting time

APTT:

Activated partial thromboplastin time

ATC:

Acute traumatic coagulopathy

BART:

Blood conservation using antifibrinolytics in a randomized trial

CABG:

Coronary artery bypass graft

CPB:

Cardiopulmonary bypass

CRASH:

Clinical randomization of an antifibrinolytic in significant hemorrhage

EACA:

Epsilon-aminocaproic acid

FDA:

Food and drug administration

GABA/A:

Gamma-aminobutyric acid type A

INR:

International normalized ratio

IV:

Intravenous

LY30:

Lysis measurement 30 minutes

MATTERs:

Military application of tranexamic acid in trauma emergency resuscitation study

PAI-1:

Plasminogen activator inhibitor-1

PAI-2:

Plasminogen activator inhibitor-2

PATCH:

Prehospital antifibrinolytics for traumatic coagulopathy and hemorrhage

PPH:

Postpartum hemorrhage

RCT:

Randomized control trial

ROTEM:

Rotational thromboelastometry

SAH:

Subarachnoid hemorrhage

TAFI:

Thrombin-activated fibrinolysis inhibitor

TBI:

Traumatic brain injury

TEG:

Thromboelastography

THA:

Total hip arthroplasty

TKA:

Total knee arthroplasty

tPA:

Tissue plasminogen activator

TXA:

Tranexamic acid

ULTRA:

Ultra-early tranexamic acid after subarachnoid hemorrhage

uPA:

Urokinase plasminogen activator

WHO:

World health organization

References

  1. Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med. 2008;359:938–49.

    Article  CAS  PubMed  Google Scholar 

  2. Sim D, Flaumenhaft R, Furie B, Furie B. Interactions of platelets, blood-borne tissue factor, and fibrin during arteriolar thrombus formation in vivo. Microcirculation. 2005;12:301–11.

    Article  CAS  PubMed  Google Scholar 

  3. Broos K, Feys HB, De Meyer SF, Vanhoorelbeke K, Deckmyn H. Platelets at work in primary hemostasis. Blood Rev. 2011;25:155–67.

    Article  CAS  PubMed  Google Scholar 

  4. Chapin JC, Hajjar KA. Fibrinolysis and the control of blood coagulation. Blood Rev. 2015;29:17–24.

    Article  CAS  PubMed  Google Scholar 

  5. de Witt SM, Verdoold R, Cosemans JMEM, Heemskerk JWM. Insights into platelet-based control of coagulation. Thromb Res. 2014;133(Suppl 2):S139–48.

    Article  PubMed  CAS  Google Scholar 

  6. Bagoly Z, Koncz Z, Hársfalvi J, Muszbek L. Factor XIII, clot structure, thrombosis. Thromb Res. 2012;129:382–7.

    Article  CAS  PubMed  Google Scholar 

  7. Michalets E, Harris L. Antifibrinolytics. Cardiovascular Thrombus [Internet]. Elsevier; 2018 [cited 2019 Apr 29]. p. 615–49. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128126158000442.

  8. Bu G, Warshawsky I, Schwartz AL. Cellular receptors for the plasminogen activators. Blood. 1994;83:3427–36.

    Article  CAS  PubMed  Google Scholar 

  9. Foley J. Plasmin(ogen) at the nexus of fibrinolysis, inflammation, and complement. Semin Thromb Hemost. 2017;43:135–42.

    Article  CAS  PubMed  Google Scholar 

  10. Levy JH, Koster A, Quinones QJ, Milling TJ, Key NS. Antifibrinolytic therapy and perioperative considerations. Anesthesiology. 2018;128:657–70.

    Article  CAS  PubMed  Google Scholar 

  11. Gong Y, Hart E, Shchurin A, Hoover-Plow J. Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice. J Clin Invest. 2008;118:3012–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Syrovets T, Simmet T. Novel aspects and new roles for the serine protease plasmin. Cell Mol Life Sci. 2004;61:873–85.

    Article  CAS  PubMed  Google Scholar 

  13. Longstaff C, Kolev K. Basic mechanisms and regulation of fibrinolysis. J Thromb Haemost. 2015;13 Suppl 1:S98–105.

    Article  CAS  PubMed  Google Scholar 

  14. Ouimet H, Francis S, Loscalzo J. Structural changes in platelet glycoprotein IIb/IIIa by plasmin: determinants and functional consequences. Blood. 1994;83(2):404–14.

    Article  PubMed  Google Scholar 

  15. Travis J, Salvesen GS. Human plasma proteinase inhibitors. Annu Rev Biochem. 1983;52:655–709.

    Article  CAS  PubMed  Google Scholar 

  16. Schneider M, Nesheim M. A study of the protection of plasmin from antiplasmin inhibition within an intact fibrin clot during the course of clot lysis. J Biol Chem. 2004;279:13333–9.

    Article  CAS  PubMed  Google Scholar 

  17. Sprengers ED, Kluft C. Plasminogen activator inhibitors. Blood. 1987;69:381–7.

    Article  CAS  PubMed  Google Scholar 

  18. Broze GJ, Higuchi DA. Coagulation-dependent inhibition of fibrinolysis: role of carboxypeptidase-U and the premature lysis of clots from hemophilic plasma. Blood. 1996;88:3815–23.

    Article  CAS  PubMed  Google Scholar 

  19. Bajzar L, Jain N, Wang P, Walker JB. Thrombin activatable fibrinolysis inhibitor: not just an inhibitor of fibrinolysis. Crit Care Med. 2004;32:S320–4.

    Article  CAS  PubMed  Google Scholar 

  20. Longstaff C. Measuring fibrinolysis: from research to routine diagnostic assays. J Thromb Haemost. 2018;16:652–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fearnley GR, Lackner R. The fibrinolytic activity of normal blood. Br J Haematol. 1955;1:189–98.

    Article  CAS  PubMed  Google Scholar 

  22. Ilich A, Bokarev I, Key NS. Global assays of fibrinolysis. Int J Lab Hematol. 2017;39:441–7.

    Article  CAS  PubMed  Google Scholar 

  23. Ives C, Inaba K, Branco BC, Okoye O, Schochl H, Talving P, et al. Hyperfibrinolysis elicited via thromboelastography predicts mortality in trauma. J Am Coll Surg. 2012;215:496–502.

    Article  PubMed  Google Scholar 

  24. Schöchl H, Frietsch T, Pavelka M, Jámbor C. Hyperfibrinolysis after major trauma: differential diagnosis of lysis patterns and prognostic value of thrombelastometry. J Trauma. 2009;67:125–31.

    PubMed  Google Scholar 

  25. Theusinger OM, Levy JH. Point of care devices for assessing bleeding and coagulation in the trauma patient. Anesthesiol Clin. 2013;31:55–65.

    Article  PubMed  Google Scholar 

  26. Chapman MP, Moore EE, Ramos CR, Ghasabyan A, Harr JN, Chin TL, et al. Fibrinolysis greater than 3% is the critical value for initiation of antifibrinolytic therapy. J Trauma Acute Care Surg. 2013;75:961–7; discussion 967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. He S, Bremme K, Blombäck M. A laboratory method for determination of overall haemostatic potential in plasma. I. Method design and preliminary results. Thromb Res. 1999;96:145–56.

    Article  CAS  PubMed  Google Scholar 

  28. Urano T, Nishikawa T, Nagai N, Takada Y, Takada A. Amounts of tPA and PAI-1 in the euglobulin fraction obtained at different pH: their relation to the euglobulin clot lysis time. Thromb Res. 1997;88:75–80.

    Article  CAS  PubMed  Google Scholar 

  29. Tengborn L, Blombäck M, Berntorp E. Tranexamic acid – an old drug still going strong and making a revival. Thromb Res. 2015;135:231–42.

    Article  CAS  PubMed  Google Scholar 

  30. Okamoto S, Okamoto U. Amino-methyl-cyclohexane-carboxylic acid: amcha. Keio J Med. 1962;11:105–15.

    Article  CAS  Google Scholar 

  31. Okamoto S, Sato S, Takada Y, Okamoto U. An active stereo-isomer (trans-form) of amcha and its antifibrinolytic (anti-plasminic) action in vitro and in vivo. Keio J Med. 1964;13:177–85.

    Article  CAS  PubMed  Google Scholar 

  32. Melander B, Gliniecki G, Granstrand B, Hanshoff G. Biochemistry and toxicology of amikapron; the antifibrinolytically active isomer of AMCHA. (A comparative study with epsilon-aminocaproic acid). Acta Pharmacol Toxicol (Copenh). 1965;22:340–52.

    Article  CAS  Google Scholar 

  33. European Society of Anaesthesiology task force reports on place of aprotinin in clinical anaesthesia. Aprotinin: is it time to reconsider? Eur J Anaesthesiol. 2015;32:591–5.

    Google Scholar 

  34. Westaby S. Aprotinin: twenty-five years of claim and counterclaim. J Thorac Cardiovasc Surg. 2008;135:487–91.

    Article  PubMed  Google Scholar 

  35. Hoylaerts M, Lijnen HR, Collen D. Studies on the mechanism of the antifibrinolytic action of tranexamic acid. Biochim Biophys Acta Gen Subj. 1981;673:75–85.

    Article  CAS  Google Scholar 

  36. McCormack PL. Tranexamic acid: a review of its use in the treatment of hyperfibrinolysis. Drugs. 2012;72:585–617.

    Article  CAS  PubMed  Google Scholar 

  37. Nilsson IM. Clinical pharmacology of aminocaproic and tranexamic acids. J Clin Pathol. 1980;33:41–7.

    Article  Google Scholar 

  38. Eriksson O, Kjellman H, Pilbrant Å, Schannong M. Pharmacokinetics of tranexamic acid after intravenous administration to normal volunteers. Eur J Clin Pharmacol. 1974;7:375–80.

    Article  CAS  PubMed  Google Scholar 

  39. Andersson L, Nilsoon IM, Colleen S, Granstrand JB, Melander B. Role of urokinase and tissue activator in sustaining bleeding and the management thereof with EACA and AMCA. Ann N Y Acad Sci. 1968;146:642–56.

    Article  CAS  PubMed  Google Scholar 

  40. Gilad O, Merlob P, Stahl B, Klinger G. Outcome following tranexamic acid exposure during breastfeeding. Breastfeed Med. 2014;9:407–10.

    Article  PubMed  Google Scholar 

  41. CRASH-2 trial collaborators, Shakur H, Roberts I, Bautista R, Caballero J, Coats T, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376:23–32.

    Google Scholar 

  42. Beno S, Ackery AD, Callum J, Rizoli S. Tranexamic acid in pediatric trauma: why not? Crit Care. 2014;18:313.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Drug Approval Package: Lysteda (tranexamic acid) NDA #022430 [Internet]. [cited 2019 Jul 7]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2009/022430_lysteda_toc.cfm

  44. Preston JT, Cameron IT, Adams EJ, Smith SK. Comparative study of tranexamic acid and norethisterone in the treatment of ovulatory menorrhagia. Br J Obstet Gynaecol. 1995;102:401–6.

    Article  CAS  PubMed  Google Scholar 

  45. Amicar (Aminocaproic Acid): side effects, interactions, warning, dosage & uses [Internet]. RxList. [cited 2019 Jul 9]. Available from: https://www.rxlist.com/amicar-drug.htm.

  46. Gerstein NS, Brierley JK, Windsor J, Panikkath PV, Ram H, Gelfenbeyn KM, et al. Antifibrinolytic agents in cardiac and noncardiac surgery: a comprehensive overview and update. J Cardiothorac Vasc Anesth. 2017;31:2183–205.

    Article  PubMed  Google Scholar 

  47. Nilsson IM, Andersson L, Björkman SE. Epsilon-aminocaproic acid (E-ACA) as a therapeutic agent based on 5 year’s clinical experience. Acta Med Scand Suppl. 1966;448:1–46.

    CAS  PubMed  Google Scholar 

  48. Nilsson IM, Sjoerdsma A, Waldenstrom J. Antifibrinolytic activity and metabolism of 6-aminocaproic acid in man. Lancet. 1960;1:1322–6.

    Article  CAS  PubMed  Google Scholar 

  49. Mcnicol GP, Douglas AS. Epsilon-aminocaproic acid and other inhibitors of fibrinolysis. Br Med Bull. 1964;20:233–9.

    Article  CAS  PubMed  Google Scholar 

  50. Fish SS, Pancorbo S, Berkseth R. Pharmacokinetics of epsilon-aminocaproic acid during peritoneal dialysis. J Neurosurg. 1981;54:736–9.

    Article  CAS  PubMed  Google Scholar 

  51. Sucher MG, Giordani M, Figoni A, Nedopil AJ. Peri-operative blood loss after total hip arthroplasty can be significantly reduced with topical application of epsilon-aminocaproic acid. Int Orthop. 2016;40:2019–23.

    Article  PubMed  Google Scholar 

  52. Gurian DB, Meneghini A, de Abreu LC, Murad N, de Matos LL, Pires AC, et al. A randomized trial of the topical effect of antifibrinolytic epsilon aminocaproic acid on coronary artery bypass surgery without cardiopulmonary bypass. Clin Appl Thromb Hemost. 2014;20:615–20.

    Article  PubMed  CAS  Google Scholar 

  53. Koster A, Faraoni D, Levy JH. Antifibrinolytic therapy for cardiac surgery: an update. Anesthesiology. 2015;123:214–21.

    Article  CAS  PubMed  Google Scholar 

  54. Fergusson DA, Hébert PC, Mazer CD, Fremes S, MacAdams C, Murkin JM, et al. A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. N Engl J Med. 2008;358:2319–31.

    Article  CAS  PubMed  Google Scholar 

  55. McMullan V, Alston RP. Aprotinin and cardiac surgery: a sorry tale of evidence misused. Br J Anaesth. 2013;110(5):675–8.

    Article  CAS  PubMed  Google Scholar 

  56. Ferraris VA, Brown JR, Despotis GJ, Hammon JW, Reece TB, Saha SP, et al. 2011 update to the Society of Thoracic Surgeons and the Society of Cardiovascular Anesthesiologists blood conservation clinical practice guidelines. Ann Thorac Surg. 2011;91:944–82.

    Article  PubMed  Google Scholar 

  57. Horrow JC, Van Riper DF, Strong MD, Grunewald KE, Parmet JL. The dose-response relationship of tranexamic acid. Anesthesiology. 1995;82:383–92.

    Article  CAS  PubMed  Google Scholar 

  58. Fiechtner BK, Nuttall GA, Johnson ME, Dong Y, Sujirattanawimol N, Oliver WC, et al. Plasma tranexamic acid concentrations during cardiopulmonary bypass. Anesth Analg. 2001;92:1131–6.

    Article  CAS  PubMed  Google Scholar 

  59. Dowd NP, Karski JM, Cheng DC, Carroll JA, Lin Y, James RL, et al. Pharmacokinetics of tranexamic acid during cardiopulmonary bypass. Anesthesiology. 2002;97:390–9.

    Article  CAS  PubMed  Google Scholar 

  60. Sharma V, Fan J, Jerath A, Pang KS, Bojko B, Pawliszyn J, et al. Pharmacokinetics of tranexamic acid in patients undergoing cardiac surgery with use of cardiopulmonary bypass*: Pharmacokinetics of tranexamic acid in cardiac surgery. Anaesthesia. 2012;67:1242–50.

    Article  CAS  PubMed  Google Scholar 

  61. Murkin JM, Falter F, Granton J, Young B, Burt C, Chu M. High-dose tranexamic acid is associated with nonischemic clinical seizures in cardiac surgical patients. Anesth Analg. 2010;110:350–3.

    Article  CAS  PubMed  Google Scholar 

  62. Menkis AH, Martin J, Cheng DCH, Fitzgerald DC, Freedman JJ, Gao C, et al. Drug, devices, technologies, and techniques for blood management in minimally invasive and conventional cardiothoracic surgery a consensus statement from the International Society for Minimally Invasive Cardiothoracic Surgery (ISMICS) 2011. Innovations. 2012;7:229–41.

    Article  PubMed  Google Scholar 

  63. Myles PS, Smith JA, Forbes A, Silbert B, Jayarajah M, Painter T, et al. Tranexamic acid in patients undergoing coronary-artery surgery. N Engl J Med. 2017;376:136–48.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang Y, Bai Y, Chen M, Zhou Y, Yu X, Zhou H, et al. The safety and efficiency of intravenous administration of tranexamic acid in coronary artery bypass grafting (CABG): a meta-analysis of 28 randomized controlled trials. BMC Anesthesiol. 2019;19:104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Lecker I, Wang D-S, Romaschin AD, Peterson M, Mazer CD, Orser BA. Tranexamic acid concentrations associated with human seizures inhibit glycine receptors. J Clin Invest. 2012;122:4654–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gupta S, Bhiwal A, Sharma K. Tranexamic acid: beware of anaesthetic misadventures. J Obstet Anaesth Crit Care. 2018;8:1.

    Article  Google Scholar 

  67. Hessel EA. What’s new in cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2019;33:2296–326.

    Article  PubMed  Google Scholar 

  68. Sharma V, Katznelson R, Jerath A, Garrido-Olivares L, Carroll J, Rao V, et al. The association between tranexamic acid and convulsive seizures after cardiac surgery: a multivariate analysis in 11, 529 patients. Anaesthesia. 2014;69:124–30.

    Google Scholar 

  69. Couture P, Lebon J-S, Laliberté É, Desjardins G, Chamberland M-È, Ayoub C, et al. Low-dose versus high-dose tranexamic acid reduces the risk of nonischemic seizures after cardiac surgery with cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2017;31:1611–7.

    Article  CAS  PubMed  Google Scholar 

  70. Lin Z, Xiaoyi Z. Tranexamic acid-associated seizures: a meta-analysis. Seizure. 2016;36:70–3.

    Article  PubMed  Google Scholar 

  71. Takagi H, Ando T, Umemoto T, All-Literature Investigation of Cardiovascular Evidence (ALICE) group. Seizures associated with tranexamic acid for cardiac surgery: a meta-analysis of randomized and non-randomized studies. J Cardiovasc Surg (Torino). 2017;58:633–41.

    Google Scholar 

  72. Koster A, Levy JH. Understanding potential drug side effects: can we translate molecular mechanisms to clinical applications? Anesthesiology. 2017;127:6–8.

    Article  PubMed  Google Scholar 

  73. Maeda T, Sasabuchi Y, Matsui H, Ohnishi Y, Miyata S, Yasunaga H. Safety of tranexamic acid in pediatric cardiac surgery: a Nationwide Database Study. J Cardiothorac Vasc Anesth. 2017;31:549–53.

    Article  CAS  PubMed  Google Scholar 

  74. Ker K, Kiriya J, Perel P, Edwards P, Shakur H, Roberts I. Avoidable mortality from giving tranexamic acid to bleeding trauma patients: an estimation based on WHO mortality data, a systematic literature review and data from the CRASH-2 trial. BMC Emerg Med. 2012;12:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Morrison JJ. Military Application of Tranexamic Acid in Trauma Emergency Resuscitation (MATTERs) Study. Arch Surg. 2012;147:113.

    Article  CAS  PubMed  Google Scholar 

  76. Ramirez RJ, Spinella PC, Bochicchio GV. Tranexamic acid update in trauma. Crit Care Clin. 2017;33:85–99.

    Article  PubMed  Google Scholar 

  77. Pre-hospital anti-fibrinolytics for traumatic coagulopathy and haemorrhage (The PATCH Study) - Full Text View - ClinicalTrials.gov [Internet]. [cited 2019 Jul 16]. Available from: https://clinicaltrials.gov/ct2/show/NCT02187120.

  78. Brohi K, Singh J, Heron M, Coats T. Acute traumatic coagulopathy. J Trauma. 2003;54:1127–30.

    Article  PubMed  Google Scholar 

  79. Ostrowski SR, Henriksen HH, Stensballe J, Gybel-Brask M, Cardenas JC, Baer LA, et al. Sympathoadrenal activation and endotheliopathy are drivers of hypocoagulability and hyperfibrinolysis in trauma: a prospective observational study of 404 severely injured patients. J Trauma Acute Care Surg. 2017;82:293–301.

    Article  PubMed  Google Scholar 

  80. Davenport RA, Brohi K. Cause of trauma-induced coagulopathy. Curr Opin Anaesthesiol. 2016;29:212–9.

    Article  CAS  PubMed  Google Scholar 

  81. Moore HB, Moore EE, Liras IN, Gonzalez E, Harvin JA, Holcomb JB, et al. Acute fibrinolysis shutdown after injury occurs frequently and increases mortality: a multicenter evaluation of 2,540 severely injured patients. J Am Coll Surg. 2016;222:347–55.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Moore EE, Moore HB, Gonzalez E, Sauaia A, Banerjee A, Silliman CC. Rationale for the selective administration of tranexamic acid to inhibit fibrinolysis in the severely injured patient: rationale for the selective administration of TXA. Transfusion. 2016;56:S110–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yuan Q, Sun Y-R, Wu X, Yu J, Li Z-Q, Du Z-Y, et al. Coagulopathy in traumatic brain injury and its correlation with progressive hemorrhagic injury: a systematic review and meta-analysis. J Neurotrauma. 2016;33:1279–91.

    Article  PubMed  Google Scholar 

  84. Gall LS, Davenport RA. Fibrinolysis and antifibrinolytic treatment in the trauma patient. Curr Opin Anaesthesiol. 2018;31:227–33.

    Article  PubMed  Google Scholar 

  85. Dewan Y, Komolafe EO, Mejía-Mantilla JH, Perel P, Roberts I, Shakur H, et al. CRASH-3 - tranexamic acid for the treatment of significant traumatic brain injury: study protocol for an international randomized, double-blind, placebo-controlled trial. Trials. 2012;13:87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Alshryda S, Sarda P, Sukeik M, Nargol A, Blenkinsopp J, Mason JM. Tranexamic acid in total knee replacement: a systematic review and meta-analysis. J Bone Joint Surg Br. 2011;93:1577–85.

    Article  CAS  PubMed  Google Scholar 

  87. Gombotz H, Rehak PH, Shander A, Hofmann A. The second Austrian benchmark study for blood use in elective surgery: results and practice change. Transfusion. 2014;54:2646–57.

    Article  PubMed  Google Scholar 

  88. Wei Z, Liu M. The effectiveness and safety of tranexamic acid in total hip or knee arthroplasty: a meta-analysis of 2720 cases: the effectiveness and safety of tranexamic acid in total hip or knee arthroplasty. Transfus Med. 2015;25:151–62.

    Article  CAS  PubMed  Google Scholar 

  89. Yu X, Li W, Xu P, Liu J, Qiu Y, Zhu Y. Safety and efficacy of tranexamic acid in total knee arthroplasty. Med Sci Monit. 2015;21:3095–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Farrow LS, Smith TO, Ashcroft GP, Myint PK. A systematic review of tranexamic acid in hip fracture surgery: tranexamic acid in hip fracture surgery. Br J Clin Pharmacol. 2016;82:1458–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xu S, Chen JY, Zheng Q, Lo NN, Chia S-L, Tay KJD, et al. The safest and most efficacious route of tranexamic acid administration in total joint arthroplasty: a systematic review and network meta-analysis. Thromb Res. 2019;176:61–6.

    Article  CAS  PubMed  Google Scholar 

  92. Cheriyan T, Maier SP, Bianco K, Slobodyanyuk K, Rattenni RN, Lafage V, et al. Efficacy of tranexamic acid on surgical bleeding in spine surgery: a meta-analysis. Spine J. 2015;15:752–61.

    Article  PubMed  Google Scholar 

  93. Zhang Y, Liu H, He F, Chen A, Yang H, Pi B. Does tranexamic acid improve bleeding, transfusion, and hemoglobin level in patients undergoing multilevel spine surgery? a systematic review and meta-analysis. World Neurosurg. 2019;127:289–301.

    Article  PubMed  Google Scholar 

  94. Karanicolas PJ, Lin Y, Tarshis J, Law CHL, Coburn NG, Hallet J, et al. Major liver resection, systemic fibrinolytic activity, and the impact of tranexamic acid. HPB. 2016;18:991–9.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Roullet S, Pillot J, Freyburger G, Biais M, Quinart A, Rault A, et al. Rotation thromboelastometry detects thrombocytopenia and hypofibrinogenaemia during orthotopic liver transplantation. Br J Anaesth. 2010;104:422–8.

    Article  CAS  PubMed  Google Scholar 

  96. Badenoch A, Sharma A, Gower S, Selzner M, Srinivas C, Wąsowicz M, et al. The effectiveness and safety of tranexamic acid in orthotopic liver transplantation clinical practice: a propensity score-matched cohort study. Transplantation. 2017;101:1658–65.

    Article  CAS  PubMed  Google Scholar 

  97. Wu C-C, Ho W-M, Cheng S-B, Yeh D-C, Wen M-C, Liu T-J, et al. Perioperative parenteral tranexamic acid in liver tumor resection: a prospective randomized trial toward a “blood transfusion”-free hepatectomy. Ann Surg. 2006;243:173–80.

    Article  PubMed  PubMed Central  Google Scholar 

  98. World Health Organization. WHO recommendations for the prevention and treatment of postpartum haemorrhage. Geneva: World Health Organization; 2012.

    Google Scholar 

  99. Ker K, Shakur H, Roberts I. Does tranexamic acid prevent postpartum haemorrhage? A systematic review of randomised controlled trials. BJOG. 2016;123:1745–52.

    Article  CAS  PubMed  Google Scholar 

  100. Shakur H, Roberts I, Fawole B, Chaudhri R, El-Sheikh M, Akintan A, et al. Effect of early tranexamic acid administration on mortality, hysterectomy, and other morbidities in women with post-partum haemorrhage (WOMAN): an international, randomised, double-blind, placebo-controlled trial. Lancet. 2017;389:2105–16.

    Article  CAS  Google Scholar 

  101. Fleming JB, Hoh BL, Simon SD, Welch BG, Mericle RA, Fargen KM, et al. Rebleeding risk after treatment of ruptured intracranial aneurysms. J Neurosurg. 2011;114:1778–84.

    Article  PubMed  Google Scholar 

  102. Roos Y, Rinkel G, Vermeulen M, Algra A, van Gijn J. Antifibrinolytic therapy for aneurysmal subarachnoid hemorrhage: a major update of a cochrane review. Stroke. 2003;34:2308–9.

    Article  PubMed  Google Scholar 

  103. Baharoglu MI, Germans MR, Rinkel GJ, Algra A, Vermeulen M, van Gijn J, et al. Antifibrinolytic therapy for aneurysmal subarachnoid haemorrhage. Cochrane Stroke Group, editor. Cochrane Database Syst Rev [Internet]. 2013 [cited 2019 Jul 27]; Available from: http://doi.wiley.com/10.1002/14651858.CD001245.pub2.

  104. Anker-Møller T, Troldborg A, Sunde N, Hvas A-M. Evidence for the use of tranexamic acid in subarachnoid and subdural hemorrhage: a systematic review. Semin Thromb Hemost. 2017;43:750–8.

    Article  PubMed  CAS  Google Scholar 

  105. Germans MR, Post R, Coert BA, Rinkel GJE, Vandertop WP, Verbaan D. Ultra-early tranexamic acid after subarachnoid hemorrhage (ULTRA): study protocol for a randomized controlled trial. Trials. 2013;14:143.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Goobie SM, Faraoni D. Tranexamic acid and perioperative bleeding in children: what do we still need to know? Curr Opin Anaesthesiol. 2019;32:343–52.

    Article  CAS  PubMed  Google Scholar 

  107. Montroy J, Hutton B, Moodley P, Fergusson NA, Cheng W, Tinmouth A, et al. The efficacy and safety of topical tranexamic acid: a systematic review and meta-analysis. Transfus Med Rev. 2018;32:165–78.

    Article  Google Scholar 

  108. Ker K, Beecher D, Roberts I. Topical application of tranexamic acid for the reduction of bleeding. Cochrane Database Syst Rev. 2013;(7):CD010562.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron N. Primm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Primm, A.N. (2021). Fibrinolysis, Antifibrinolytic Agents, and Perioperative Considerations. In: Scher, C.S., Kaye, A.D., Liu, H., Perelman, S., Leavitt, S. (eds) Essentials of Blood Product Management in Anesthesia Practice. Springer, Cham. https://doi.org/10.1007/978-3-030-59295-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59295-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59294-3

  • Online ISBN: 978-3-030-59295-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics